

DETERMINACIÓN DE LA VELOCIDAD DE PROPAGACIÓN DEL ACERO 12CR1MOV(12X1MΦ), CON CERO HORAS DE TRABAJO

Alexis Mora Sarmiento, Eduardo Franco Fidalgo, Frank De Los Reyes Rodríguez Universidad de Oriente

En este artículo, simulando las condiciones reales de explotación de las Lineas Principales de Vapor(LPV), se determinan las características del material a altas temperaturas, calculándose la velocidad de propagación de la grieta en el material con cero horas de trabajo. **Palabras clave:** propagación de grietas.

In this article simulating the real conditions of exploitation of you Line them Main of Steam (LMS), the characteristics are determined from the material to high temperatures, being calculated the speed of propagation of the crack in the material with zero working hours. **Key words:** propagation of cracks.

Introducción

Nuestro país ha presentado grandes dificultades con las centrales termoeléctricas, el Grupo de Mecánica de Fractura y Materiales (GMFM) de la Universidad de Oriente realiza estudios en la central termoeléctrica de "Renté". Una de las primeras tareas del grupo fue la determinación de vida útil de la Línea Principal de Vapor (LPV), ya que es uno de los grandes problemas de estas centrales, actualmente está inmerso en la búsqueda de soluciones metaloestructurales de estas unidades, en específico el estudio de los mecanismos de falla en los componentes de las LPV de las unidades de 100 Mw.

Las normas de explotación elaboradas por el fabricante y establecidas por la Unión Nacional Eléctrica (UNE) prohiben la explotación de las LPV que presenten grietas o microgrietas en cualquiera de sus componentes, las que se hacen más frecuentes en los codos y uniones soldadas.

De los estudios precedentes realizados se desprende que la iniciación y posterior propagación de las grietas en materiales metálicos a elevadas temperaturas es un problema de alta complejidad. El tema en cuestión es uno de los más complejos en las investigaciones de los materiales a fatiga a altas temperaturas, como consecuencia de un conjunto de interacciones con la termofluencia.

Como producto de la metodología de cálculo por obtener, las unidades de 100 Mw podrán

continuar trabajando con defectos, siempre y cuando los cálculos de vida útil así lo demuestren; ello permitirá la compra en el exterior del codo o tramo recto correspondiente en función del tiempo de vida del componente, y a un costo más bajo, al no recurrir a los servicios urgentes de entrega y transportación (Rusia-Cuba). Para poder aplicar los conceptos de la mecánica de fractura en estas LPV, en la determinación de vida útil, es necesario determinar la velocidad de crecimiento de la grieta.

Materiales y procedimiento experimental

Velocidad de propagación de la grieta (da/dt)

Para conocer con qué velocidad se propagan los defectos en las líneas principales de vapor, se trabajó sobre la base de la norma ASTM E 1457 "Standard Test Method for Measurement of Creep Crack Growth Rates in Metals" /1/, la cual fue aplicada a la operatoria del ensayo.

Para determinar la velocidad de propagación de la grieta en el material de las LPV, teniendo en cuenta los mecanismos de propagación, según las informaciones de los artículos analizados /2, 3/, las características físicas de la LPV y las experiencias del grupo de investigación /4/, los principales mecanismos de propagación son: (fatiga+fatiga térmica)+termofluencia; se utilizará una instalación que realiza ensayos de termofluencia, simulando la fatiga+fatiga térmica con las paradas y arrancadas en la misma instalación y la termofluencia como un ensayo normal de termofluencia según norma ASTM E-1457/1/. En el caso de la determinación de la razón de tiempo de propagación de grietas por termofluencia, se expresa en términos diferencia de tiempo entre diferencia de área da/ dt (mm/h), el valor de dicha razón se relaciona con parámetros establecidos /5/.

La razón de propagación por termofluencia expresa la característica de resistencia de un material para propagar una grieta bajo condiciones específicas de deformación por termofluencia.

Este método es aplicado para metales a elevadas temperaturas usando probetas compactas preagrietadas por fatiga, calentadas hasta la temperatura de prueba por medio de un horno adecuado sometidas a condiciones de carga estáticas o casi estáticas, es decir, constante en el tiempo /5/. Los valores de carga y de dimensión de grieta son recogidos, discutidos y procesados para, finalmente, obtener la razón de propagación.

Es necesario establecer la correlación entre el efecto de las condiciones del fenómeno para la muestra y los componentes de fijación diseñados para este tipo de probeta, respecto a sus límites de termofluencia.

El establecimiento de las condiciones de ensayo del metal es de vital importancia, ya que de aquí se derivan las evaluaciones y comparaciones entre las razones obtenidas. Los parámetros fijados son límites de carga y temperatura de operación. La velocidad de propagación de la grieta depende, fundamentalmente, de los siguientes factores /6, 7/:

- Estructura metalográfica
- Temperatura (pero como se realiza a temperatura constante; no se tiene en cuenta)
- Densidad de dislocaciones.

Utilizando un diseño de experimento factorial con dos niveles, el número de repeticiones del experimento será:

 $Nr = 2^{K}$

donde K en este caso es 2, por lo tanto Nr = 4 es decir, se necesita analizar, al menos, cuatro probetas.

Desarrollo de los pasos para determinar la velocidad de crecimiento de la grieta, en las LPV

1er Calibrar la dilatación de lineal de la probeta con una carga de 10 kg, solamente para mantener la probeta en posición de ensayo:

Para desarrollar este punto, primeramente se debe posicionar la probeta dentro del horno de termofluencia, a través de los sistemas de sujeción del sistema de cargas (varillas y entre dos); se debe cargar la probeta con 10 kgf para asegurar o mantener la probeta en posición de ensayo, de tal forma que se pueda despreciar dicha carga, y solamente se obtenga la dilatación lineal del sistema completo. Para realizar el ensayo se debe controlar el desplazamiento (v) y la temperatura (T).

Con este resultado, se determinó la correlación que existe entre estas variables, obteniéndose el modelo matemático y su dependencia (figura 1):

2do Calibrar la relación entre desplazamiento y los parámetros b_1 , b_2 y b_3 de la grieta

Para desarrollar este experimento, se ensayaron ocho probetas (de la probeta ocho a la 15), se calentó hasta 545 °C el horno sin probetas en 83 min, luego se montó la probeta con $\Delta a_0 = 0,1*W=$ 0,1*16,5=1,65mm, y se cargó con 300 kgf durante tres min (dos probetas), seguidamente se cargan dos probetas más con 300 kgf durante un min, dos probetas más con 300 kgf durante 40 s, y dos probetas con 300 kgf durante 18 s. En cada una de estas cargas se mide el desplazamiento en ese tiempo.

Después, como a altas temperaturas /8/ ocurre un crecimiento de grieta (siempre que se cumpla la deformación plana) por los laterales (b₁, b₂), inferior al crecimiento de la grieta por el centro del área por propagar (b₃), se necesita propagar la grieta a temperatura ambiente para observar dicha diferencia, y disminuir los errores. A partir de aquí se determina la longitud de la grieta (a) y del ligamento (b) y su relación con el desplazamiento.

Tabla 1Relación de la longitud de la grieta, ligamento y desplazamiento. (Autor)

t(s)	V(mm)	b ₁ (mm)	b ₂ (mm)	b ₃ (mm)	a(mm)	Δa(mm)
180	7	0,75	0,78	0,65	15,85	4,7
60	5,12	3,0	2,9	2,7	13,8	2,65
40	4,58	3,4	3,5	3,1	13,4	2,25
18	3	4,7	4,6	4,35	12,15	1

Nota: Todas las probetas tienen una longitud de grieta inicial promedio

 $a_0 = 1,65 \text{ mm y}$ una carga de 300 kgf (R=7,4 kg/mm²).

 $\Delta a = (0,0338\ 715 + 0,310\ 988*V)^2$

 $a = (3,10\ 008 + 0,12\ 396*V)^2$

Fig. 3 Dependencia entre a y V.

b_{1,2} = 0,0748 147 + 1,06 951*b3 Fig. 4 Dependencia entre los ligamentos.

3er Realizar ensayo de velocidad de propagación por transitorio de paradas y arrancadas (a tensión constante R= 7,4 kg/mm²= 74 Mpa). La probeta se monta con el horno a temperatura ambiente y se registran los siguientes parámetros t_i, t_f, Δt , V₀, V_f, P, (b₁, b₂ y b₃) inicial. A_{final}, (b₁, b₂ y b₃) final, T_i, T_f, $\Delta \alpha$. Se calcula la velocidad de crecimiento de grieta para 0 h (m/h), y finalmente se traza la curva d_a contra número de ensayos de paradas

 d_n

y arrancadas, donde n es el número de paradas y arrancadas.

Tabla 2 Valores de da/dn y ΔK del ensayo de propagación por transitorios de paradas y arrancadas. (Autor)

da/dn(mm/ciclos)	ΔK(Mpa.m ^{1/2})
0	<16
0,001 500	16
0,001 243	21
0,001 57	24
0,002 368	26
0,003 343	29
0,006 75	31

Fig. 5 Dependencia entre da/dN y ∆K en la propagación de grieta por transitorio de paradas y arrancadas. (Autor).

 $da/dn = (-0.051 + 0.004 * \Delta K)^2$ (Modelo matemático)

4to Realizar los ensayos de velocidad de propagación de la grieta a tensión (7,4 kg/mm²) y temperatura (545 °C) constante (termofluencia). Se trabaja con el valor medio de (P) para el área media.

Análisis del ensayo de termofluencia

Cálculo de la velocidad de propagación de la grieta por termofluencia

B (m)= 0,009 m P(N)= 1 000 N

Discusión de los resultados

El 1er paso de calibración de la dilatación lineal del material, de la probeta, es muy importante para poder determinar puramente la deformación del material debido a la aplicación de cargas mecánicas, es decir, que una vez determinado el desplazamiento total del sistema de carga, acoplado a la probeta, se le resta la dilatación lineal debido a las temperaturas, de esta forma se eliminan los posibles errores, y por lo tanto, las erróneas interpretaciones del valor de la velocidad de propagación de la grieta.

Probetas	∆a(m)	T(h)	⊽ (m/h)	V(Poisson)	₹.ç. (m/h)
3	11*10 ⁻⁵	243	4,52*10 ⁻⁷	0,25	1,43*10 ⁻⁷
4	13*10 ⁻⁵	244	5,32*10 ⁻⁷	0,25	1,79*10 ⁻⁷
16	12*10 ⁻⁵	257	4,67*10 ⁻⁷	0,25	1,52*10 ⁻⁷
17	14*10 ⁻⁵	238	5,88*10 ⁻⁷	0,25	1,72*10∜

Tabla 3 Datos para realizar el cálculo de la velocidad por termofluencia. (Autor)

 $da/dt = -0,00\ 033 + 0,000\ 024*K_{IC}$ (Modelo matemático)

El 2do paso de la calibración de la relación entre desplazamiento y los parámetros b_1 , b_2 y b_3 de la grieta, se realiza para poder determinar, a través del desplazamiento, tanto el incremento de grieta, como el tamaño de grieta en todo momento, sin necesidad de parar la experimentación y más si se tiene en cuenta que se realiza el ensayo a 545 °C. En el 3er paso se realiza el ensayo de velocidad de propagación por transitorio de paradas y arrancadas (a tensión constante $R=7,4 \text{ kg/mm}^2=74 \text{ Mpa}$). En este ensayo, los primeros valores de carga no son significativos, lo cual se debe a las dimensiones de la probeta, esto se explica ya que estamos limitados con el material por las dimensiones de la tubería y del horno de termofluencia. Con la carga de 100 kgf se observan valores adecuados de crecimiento de grieta (deformación) plana, lo cual es lo idóneo para piezas como las LPV que son cilíndricas, por lo que los cálculos y análisis se realizarán a partir de este intervalo; además, en los otros transitorios de esta probeta se observa cómo la propagación con esta carga se mantiene correcta dentro de límites adecuados.

En la dependencia obtenida entre da/dN y ΔK en la propagación de grieta por transitorio de paradas y arrancadas, se muestra un modelo típico de estas curvas, donde se presenta una primera etapa con ritmo de velocidad decreciente; luego una segunda etapa con ritmo constante, y por último una tercera etapa con ritmo creciente, de cuyas etapas se trabaja con la segunda, debido a su ritmo de velocidad de propagación, siendo ésta la más representativa, por lo tanto se determina la ecuación preferentemente de este tramo, caracterizando la velocidad de propagación de la grieta por transitorios de paradas y arrancadas.

En el 4to paso se realizan los ensayos de velocidad de propagación de la grieta a tensión (7,4 kg/mm²) y temperatura (545 °C) constante (termofluencia). Se obtiene igualmente la dependencia entre la velocidad en el tiempo y el factor de intensidad de tensiones crítico en la propagación de grieta por termofluencia, observándose tres tramos de ritmos decreciente, constante y creciente, respectivamente, determinando nuevamente el modelo matemático del segundo tramo, que caracteriza la velocidad de propagación de la grieta por termofluencia.

Conclusiones

Se puso en marcha la instalación de termofluencia, adaptando ésta a los ensayos, simulando condiciones de explotación de las lineas principales de vapor. Se determinó la relación entre la dilatación y la temperatura en este material, además de desplazamiento del sistema de carga, con el crecimiento de la grieta, logrando determinar finalmente el modelo matemático que rige la velocidad de propagación de la grieta tanto por fatiga como por termofluencia. Estos resultados son de suma importancia para la determinación de vida útil en estas piezas.

Nomenclatura

Ν	r Número de repeticiones de ensayos		
K	Números de variables independientes		
V	Desplazamiento (mm)		
Т	Temperatura (°C)		
Δ	a ₀ Incremento de grieta		
b	b , b , Ligamentos de la probeta		
Δ	K Variación del factor de intensidad de		
	tensiones		
R	Tensión		
K	Factor de intensidad de tensiones		
V	č ó da/dt Velocidad de propagación por		
	termofluencia		
ν	Relación de Poisson		
P	Carga de aplicación		
B	Parámetro geométrico de la probeta de		
	ensayo.		
d	a/dN Velocidad de propagación por fatiga		
t _i	, $\mathbf{t}_{\mathbf{f}}$, $\Delta \mathbf{t}$ Valores de tiempo de ensayo		
Á	Sección de las probetas de ensayo		
a	Tamaño de grieta		

a Tamaño inicial de grieta

Bibliografía

- A. N. Casanelli and L.A. de Vedia, ASTM E 1457-00. Standard Test Method for Measurement of Creep Crack Growth Rates in Metals, 2000.
- AK Ray, Remaining life assessment of service exposed reheater and superheater tubes in a boiler of a thermal power plant, Artículo, Dirección: Ray AK, Nat. Met Lab, MTR Div, Jamshedpur 831007, Bihar, India, 2002.
- 3. A. N. Casanelli and L. A De Vedia, Internacional Journal of Fracture 83, 1997, págs, 167-173.
- 4. _____ASTM E 399-91. Standard Test Method for Plane - Strain Fracture, 1991.
- 5. Buty Rajashtadt, Aceros y aleaciones para altas temperaturas, Editorial Mir, Moscú, 1976.
- 6. Callister, Materials Science and Engineering, USA, Soporte Magnético, 1998.
- Guliav. A. P. Metalografía tomo I y II, Editorial Mir Moscú, 1978.