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ABSTRACT

The statistical process control charts are an important diagnostic technique
indicative of operational deviations to enhance the quality of automated systems
and products. The purpose of this work was to design the control chart (X-Rm)
for monitoring the superheating steam temperatures in a thermoelectric power
plant. The automatic control chart patterns recognition was performed using
decision rules and test zones, from which the stability index and the area-
threshold for the remaining useful life were calculated. The chart consisted of
2163 normal data, center line 521,73 °C, lower control limit 519,31 °C, and
upper control limit 523,76 °C. Shift-trend presented the highest relative
frequency due to the possible general causes: poor standardization, changes in
work procedures, and failures in the industrial network. The area-threshold was
581-1193 u? for WECO rules. This work is expected to contribute to implement
condition-based maintenance strategy.

Keywords: control chart; predictive maintenance; remaining useful life.

OOuDS 5



Rojas-Vargas, et. al, / Tecnologia Quimica, Vol. 46 (2026), pp.5-19

RESUMEN

Las cartas de control estadistico de procesos son una importante técnica
diagnéstica indicativa de desviaciones operacionales para mejorar la calidad de
los sistemas automatizados y productos. El propdsito de este trabajo fue
disefar la carta de control X-Rm para el monitoreo de la temperatura del vapor
sobrecalentado en una planta termoeléctrica. El reconocimiento automatizado
de los patrones se realiz6 mediante reglas de decisiones y zonas, a partir del
cual se calculd el indice de estabilidad y el area-limite para la vida atil restante.
La carta consisti6 en 2163 datos normales, linea central 521,73 °C, limite de
control inferior 519,31 °C, y limite superior 523,76 °C. El patrén cambio de nivel
presentd la mayor frecuencia relativa debido a las posibles causas generales:
poca estandarizacion, cambio en los procedimientos de trabajo, y fallas en la
red industrial. El area-limite fue 581-1193 u® para las reglas WECO. Se espera
que este trabajo contribuya a la implementacion de la estrategia de
mantenimiento basada en condiciones.

Palabras clave: carta de control; mantenimiento predictivo; vida util restante.
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Introduction

The statistical process control (SPC) charts are an on-line process-monitoring
technique widely used for quality management of automated systems and
products. Its major objective is to quickly detect the occurrence of assignable
causes of variation such as machine failure, change in standards, and
inadequate training. A process that is operating in the presence of assignable
causes is said to be an out-of-control process, so that investigation and
corrective actions are required to find and minimize the root cause for this
behavior. Consequently, the variability will be reduced, and the stability process
will be improved.® 234

Methods for looking for the most common sequences, or nonrandom patterns,
are applied to control charts to detect out-of-control conditions and identify the
root causes that may produce such patterns. The control chart patterns (CCPs)

can be classified in single abnormal patterns or concurrent patterns, which can
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be combined with two or more single patterns.® & ” CCPs recognition use
methods such as decision rules and test zones. Shewhart rule (1924), Wester
Electric Co. rules (WECO) (1956), Nelson’s test (1984) and AIAG rules (2005)
are widely used.® 9 10:11.12)

In the recent years, the abnormal patterns are identified via soft computing
methods. These mainly consists of two parts: Learning module and Recognition
module. During the learning module, statistical features and shape features are
extracted through raw data.® & 7 131415 On the other hand, technologies from
Industry 4.0 are incorporated for the recognition module. Machine learning (ML)
algorithms that include artificial neural networks (ANNS), support vector
machines (SVM) and decision trees (DT) are used. In addition, fuzzy inference
system (FIS), and hybrid methods are evaluated. At the same time, genetic
algorithm (GA), particle swarm optimization (PSO), fireworks algorithm (FWA)
and grid search are chosen to optimize parameters and improve recognition
effiCiency.(G‘ 7, 13, 14, 15, 16)

From above, the accurate recognition of abnormal patterns makes the control
chart an important diagnostic technique indicative of operational deviations, to
enhance the quality of automated systems, processes, and products.
Advancements diagnostic technologies led to the Predictive Maintenance (PdM)
strategy. PdM is a technology used to predict the failure of a machine
component so that schedule maintenance can be performed just in time to
prevent failure and production downtime. Condition-based maintenance (CBM)
is an efficient method for PdM. This technique utilizes sensors directly
integrated into the specific machinery that collect a wide variety of real-time
measurements, including vibration analysis, acoustic emission, electrical
signature analysis, thermography, tribology, flow rates, temperature, and
pressure. A component’s degradation state is evaluated based on deviations
from normal running conditions.®: 18 19.20.21)

Remaining useful life (RUL) is a prognostic technique. This is defined as the
length of time a machine can operate before tool replacement or repair. To
estimate RUL, data-driven method is used, this involve diagnosing the health of
a machine and predicting potential issues.*® 20 2122, 23, 24)

Thus, by combining the statistical process control and Industry 4.0 technologies

- sensors, data acquisition systems, big-data collection, and data-driven
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algorithm - to monitor equipment performance in real time, remaining useful life
can be satisfactory evaluated.®® 21 22.23.24)

The purpose of this work was to design Individuals and moving range (X-MR)
chart for monitoring the superheating steam temperatures in a thermoelectric
power plant. Variation patterns on the control chart and the possible assignable
causes were identified using decision rules and test zones. Finally, the area-

threshold for the remaining useful life was evaluated.

Materials and methods

The research was carried out using the following steps.®

Phase I. Statistical Control Chart design.

a) Choose the appropriate metrics

Quality characteristics were chosen based on Rankine cycle analysis, these are
the boiler pressure (Pv), the superheating steam temperatures before the fourth
reheat stage (Tv-SH#4), and the condenser pressure (Pv*).?>

b) Select the control chart

Individuals and moving range (X-MR) chart was selected because the quality
characteristics are continuous; and an automated inspection and measurement
technology is used.® ¥

c) Sampling and data collection

Data were obtained every two hours for eight months of operations using
Supervisory Control and Data Acquisition (SCADA) System, at a Cuban
thermoelectric power plant. The sample size was 2163 individual points, using
Z=1.96, two-sided test, 95% confidence level, assuming a standard deviation
o(x) = 0,759 3, and error e = 0, 032.%®

d) Determination of control limits or Data processing.

Control limits of an individuals and moving range (X-MR) chart were determined
from the average, mean range and standard deviation. The boiler pressure (Pv)
was selected as the guiding variable.* % 34 2%

e) Recalculation of control limits or Data filtering

Measurement points beyond the control limits were removed from the data set

after analyzing the possible assignable causes. The elimination and
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recalculation process were repeated while one or more points exceeded the
new limits.

f) Checking control chart assumptions

Assumption of normality was checked using StatGraphic Centurion v.19.0, by
graphical and numerical methods. The standardized Skewness statistic and the
log likelihood statistic were also evaluated for the comparison of alternative
distributions.

Phase II. Prospective quality characteristic monitoring

g) Quality characteristic monitoring and recognizing control chart patterns

The points beyond the control limits, abnormal patterns within the limits, and

special causes of variation were analyzed (table 1).

Table 1- Non-random patterns and their description

Rules WECO Nelson AIAG
No. Pattern Description run
R-1 Beyond Limits ~ One or more points beyond the control limits X X X
R-2 Shift-trend 9 or more consecutive points on one side (above X X X
or below) of the Central Line (8) 9) (7)
R-3 Trend 6 or more consecutive points trending up or X X
trending down
R-4 Over-control 14 consecutive points alternating up and down X
(cyclic pattern)
R-5 Large shift 2 out of 3 consecutive points in Zone A (or F) or X X
beyond
R-6 Small shift 4 out of 5 consecutive points in Zone B (or E) or X X
beyond
R-7 Stratification 15 consecutive points in Zone C (and D), either X
above or below LC
R-8 Mixture 8 consecutive points on both sides of LC with no X

points in Zone C
Source: Montgomery (2009); Trip (2010), Noskievicova (2013), Zhao (2017), Mu (2021), Garcia (2022)

A software application was performed for the automatic CCPs recognition, both
simple and concurrent. This application consisted of a decision tree (DT),
tendency and dispersion statisticians, and shape features such as: mean value,
standard deviation, determination coefficient of the least-square line, slope and
sign, common difference, and average of three successive mensuration.

g) ldentification of root assignable cause

When an unnatural pattern is identified on the control chart, it indicates that the
process is out-of-control. Therefore, it is necessary to identify the potential root

cause linked to the pattern and developing corrective actions to improve the
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process.” * 19 |n this work, the relative frequency distribution for the simple
pattern, and conditional probability for concurrent patterns were
determined (1). @

P(ANB)
P(B) 1)

P(A|B) =
h) Stability index or data normalization
The stability index (1-S;) is expected to tend to one at each instant, which

means that the variation due to special - causes is minimal (2).?

SPRul
TP

(1-5)=1- (2)

where

SPruL is the number of special points indicating special - cause variation without
double count, and TP is the number of total points, both in the same period.
From table 1, R-1, R-5, and R-6 patterns contribute SPry. = 1; however, the
remaining patterns contribute from the last point onward, for example, the trend
(R-3) consists of six or more points, so it contributes SPgry. = SP — 5. When (1-
Sy) is less than 95%, it becomes impossible to address all the special signals. In
these cases, it is better to analyze the main patterns in the chart, generate
conjectures about their causes, and proceed to corroborate those conjectures.®
i) Area-Threshold for Remaining Useful Life. Health Indicator

The area-threshold (AruL) between the functions f(t)=1 and f(1-S; was
determined using the definite integral method. Subsequently, using the area
contributed by each significant process variable, the area-threshold for
remaining useful life (RUL) was obtained.

Results and discussion

Superheating steam temperatures (Tv-SH#4) were obtained every two hours for
eight months from the SCADA real-time database. Two months were excluded
from the data set because these affected the normality assumptions. The
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control chart was finally designed with 2163 measurements, mean range (Rm)
0.86 °C, standard deviation 0.76 °C, mean value (u) 521,73 °C, lower control
limit (LCL, -3c) 519.31 °C, and upper control limit (UCL, +3c) 523,76 °C
(figure 1).
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Fig. 1 - Statistical control chart of superheating steam temperatures (Tv-SH#4, °C).

2163 individual points. Sampling every two hours

In addition, the temperature was distributed above the central line (CL) for
52,9 % of measurements and below CL 47,1 %, within Zone-A 10.5 %, Zone-B
16,8 %, Zone-C 25,6 %, Zone-D 22,2 %, Zone-E 15,3 %, and Zone-F 9.6 %.
According to design parameters, Tv is 525 °C at 13,70 MPa.

Variation patterns were determined on the control chart such as downward and
upward shift (R-2), upward and downward trend (R-3), large shift (R-5), small
shift (R-6), and stratification (R-7) (figure 2). The unnatural pattern shift-trend
(R-2) had the highest number of special points, with a relative frequency of
88,94 %, due to possible general causes: poor standardization, changes in work
procedures, and failures in the industrial network (table 2).? # 12

Concurrent patterns reached 5.9 % conditional probability, due to combinations
of Nelson’s run rules: shift-trend, large shift, small shift, and stratification
(table 3). The stability index (1-S;) in the Phase | was 59,8 %, indicating an out-

of-control statistic process.
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Fig. 2 — Variation patterns on the control chart of superheating

steam temperatures

Table 2- Phase I. Unnatural pattern Tv-SH4 (relative frequency, %)

R-2 R-3 R-5 R-6 R-7
Rules Shift-trend Trend Large shift Small shift Stratification
Av(@ Bw(® up© Dw(d Av Bw Av Bw Zone C -E
SPruL® 44.05 44.90 1.61 0.76 066 047 095 0.38 6.33

@Av: Above Central Line; ®)Bw: Bellow Central Line; © Up: Upward; @ Dw: Downward; (¢ SP: Special Points

Table 3- Phase |. Combination of patterns Tv-SH4 (conditional probability, %)

Combination Large shift Small shift Stratification
(R-5)Bw (R-6)ew (R-7)
Shift-trend (R-2)av 1.54 - 0.75
(R-2)aw 1.10 1.19 0.68

(@Av: Above Central Line; ®)Bw: Bellow central Line; ) Up: Upward; @ Dw: Downward; () SP: Special Points

Checking assumptions of normality
Normality was check using StatGraphic Centurion v.19.0. Density trace and
frequency histogram show a shape like a Gaussian bell curve with moderate
asymmetry (figure 3a, b). The data were arranged on the trend line in the
symmetry graph, but points negatively skewed between 0.8-2.4 can be seen
(figure 3c). Though, the points were located on the curve cumulative distribution

for the standard normal curve (figure 3d).
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Fig. 3 — Normality check for the superheating steam temperatures (Tv-SH#4)

The temperature was modeled by normal distribution with 95% confidence
according to Kolmogorov-Smirnov. However, modified Kolmogorov-Smirnov D,
Cramer-Von Mises W”2, and Anderson-Darling A2 tests were not satisfactory
(p-value < 0.01). This could be due to non-random variation within the limits on
the control chart. Therefore, the sample size must be increased.

In addition, standardized Skewness statistic obtained a value of -1,615 3 in the
expected range [-2; 2]. According to the log likelihood statistic, the best fitting
distribution is the normal distribution. Then, the assumptions of normality were

accepted with the above exceptions.

Quality characteristic monitoring
X-Rm chart was applied for monitoring Tv-SH#4 for 1166 h consecutive.
Individual points were distributed above the central line (CL) 79,4 % of
measurements and below LC 20,6 %, within Zone-A 3,9 %, Zone-B 33,8 %,

Zone-C 43,9 %, Zone-D 13,4 %, Zone-E 3,4 %, and Zone-F 1,7 % (figure 4).
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Fig. 4 - Superheating steam temperatures (Tv-SH#4, °C), sampling every one hour

The points beyond the control limits (R-1) reached 8,5 % relative frequency, and

the shift-trend pattern (R-2) 77.9 %, due to poor standardization and set-up

changes. The stability index resulted 66,3 % (table 4).

Table 4- Phase Il. Unnatural pattern Tv-SH4 (relative frequency, %)

R-1 R-2 R-3 R-5 R-6 R-7
Rules Beyond Limits Shift-trend Trend Large shift Small shift Stratification
Av@) Bw® Av Bw uUp@ pw® Av Bw Av Bw Zone C-D
3G +3c Lce LC LC LC LC LC
SPruL® 1.3 7.2 774 0.5 4.6 3.1 0.8 0.3 36 - 1.3

@Av: Above; ®©)Bw: Bellow; ©) CL: Central Line; (¥ Up: Upward; ) Dw: Downward;

Area-Threshold for the Remaining Useful Life

SP: Special Points

The stability index (1-S;) was calculated for four stages of continuous operation.

The operating variables and control limits were boiler pressure Pv = [13,22,

13,44] MPa ®®, superheating steam temperatures Tv =

[519,21, 523,76) °C, and

condenser pressure Pv* = [3,63, 5,47] MPa. These variables reached the

following values assumed as a shut-down system: Pv = [0,10, 12,44] MPa,

= [191,1, 515,8] °C, Pv* = [1,52, 3,63) U (5,47, 6,31] MPa (figure 5).
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Fig. 5 — Stability index (1-S;) for Tv-SH#4 (°C) versus Remaining Useful Life (RUL)

In figure 5, the stability index (1-S;) fluctuated with ups and downs. It shows
periods of decline (1-S;) < 0,95, characteristic of an unstable process due to
special causes of variation, followed by periods of rise with a predominance of
normal points (NP). The area-threshold (permissible value) for the Remaining
Useful Life (RUL) was determined between the functions f(t)=1 and f(1-Sy). It
ranged from 581 to 1193 u?, with a standard deviation of 285 u? relative to the
WECO standards (figure 6).

1200 ‘ HPv W Tv-SCH#4 Pv*
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345
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No.1 No. 2 No. 3 No. 4
Fig. 6 - Area-Threshold (Agy.) for the Remaining Useful Life (RUL), WECO
rules

It should be noted that scheduling maintenance cycles in electrical grid is a
complex activity due to the close coordination required by different
stakeholders. This is influenced not only by the quality and durability of the
equipment components, maintenance effectiveness, environmental conditions,
and costs; but decision-makers also consider balancing system availability and
potential failures ®® 2. A summary of the area thresholds for the WECO rules,

the Nelson run, and the AIAG is presented in table 5.
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Table 5- Area-Threshold for the Remaining Useful Life (RUL)

Rules Pattern (ARUL)mean (ARUL)min (ARUL)maz O(x)
WECO 4 840 581 1193 285
Nelson's run 8 979 634 1996 593
AIAG 3 886 605 1289 308

It was suggested that superheating steam temperatures control limits be
implemented, and appropriate corrective measures be taken to increase the
stability index in operations. This project continues with the goal of analyzing
new variables, extending the evaluation period, and predicting Remaining
Useful Life. It is expected to contribute to the implementation of a condition-
based maintenance strategy, aimed at achieving proper utilization of installed

thermal capacity.

Conclusions

Individuals and moving range (X-MR) chart was designed to monitor
superheating steam temperatures with 2163 individual points, central line (CL)
521,73 °C, lower control limit (LCL) 519,31 °C, and upper control limit (UCL)
523,76 °C.

Abnormal patterns were determined, with the shift-trend having the highest
relative frequency due to possible general causes: poor standardization,
changes in work procedures, and failures in the industrial network. Concurrent
patterns, a combination of two single patterns, reached a 5,9 % conditional
probability.

The area-threshold for remaining useful life was evaluated using decision rules
and test zones, representing a range 581 to 1193 u?and standard deviation 285
u? for WECO rules.
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