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ABSTRACT 

The statistical process control charts are an important diagnostic technique 

indicative of operational deviations to enhance the quality of automated systems 

and products. The purpose of this work was to design the control chart (X-Rm) 

for monitoring the superheating steam temperatures in a thermoelectric power 

plant. The automatic control chart patterns recognition was performed using 

decision rules and test zones, from which the stability index and the area-

threshold for the remaining useful life were calculated. The chart consisted of 

2163 normal data, center line 521,73 °C, lower control limit 519,31 °C, and 

upper control limit 523,76 °C. Shift-trend presented the highest relative 

frequency due to the possible general causes: poor standardization, changes in 

work procedures, and failures in the industrial network. The area-threshold was 

581-1193 u2 for WECO rules. This work is expected to contribute to implement 

condition-based maintenance strategy. 

Keywords: control chart; predictive maintenance; remaining useful life. 
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RESUMEN 

Las cartas de control estadístico de procesos son una importante técnica 

diagnóstica indicativa de desviaciones operacionales para mejorar la calidad de 

los sistemas automatizados y productos. El propósito de este trabajo fue 

diseñar la carta de control X-Rm para el monitoreo de la temperatura del vapor 

sobrecalentado en una planta termoeléctrica. El reconocimiento automatizado 

de los patrones se realizó mediante reglas de decisiones y zonas, a partir del 

cual se calculó el índice de estabilidad y el área-límite para la vida útil restante. 

La carta consistió en 2163 datos normales, línea central 521,73 ºC, límite de 

control inferior 519,31 ºC, y límite superior 523,76 ºC. El patrón cambio de nivel 

presentó la mayor frecuencia relativa debido a las posibles causas generales: 

poca estandarización, cambio en los procedimientos de trabajo, y fallas en la 

red industrial. El área-límite fue 581-1193 u2 para las reglas WECO. Se espera 

que este trabajo contribuya a la implementación de la estrategia de 

mantenimiento basada en condiciones.  

Palabras clave: carta de control; mantenimiento predictivo; vida útil restante. 
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Introduction 

The statistical process control (SPC) charts are an on-line process-monitoring 

technique widely used for quality management of automated systems and 

products. Its major objective is to quickly detect the occurrence of assignable 

causes of variation such as machine failure, change in standards, and 

inadequate training. A process that is operating in the presence of assignable 

causes is said to be an out-of-control process, so that investigation and 

corrective actions are required to find and minimize the root cause for this 

behavior. Consequently, the variability will be reduced, and the stability process 

will be improved.(1, 2, 3, 4) 

Methods for looking for the most common sequences, or nonrandom patterns, 

are applied to control charts to detect out-of-control conditions and identify the 

root causes that may produce such patterns. The control chart patterns (CCPs) 

can be classified in single abnormal patterns or concurrent patterns, which can 
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be combined with two or more single patterns.(5, 6, 7) CCPs recognition use 

methods such as decision rules and test zones. Shewhart rule (1924), Wester 

Electric Co. rules (WECO) (1956), Nelson´s test (1984) and AIAG rules (2005) 

are widely used.(8, 9, 10, 11, 12) 

In the recent years, the abnormal patterns are identified via soft computing 

methods. These mainly consists of two parts: Learning module and Recognition 

module. During the learning module, statistical features and shape features are 

extracted through raw data.(5, 6, 7, 13, 14, 15) On the other hand, technologies from 

Industry 4.0 are incorporated for the recognition module. Machine learning (ML) 

algorithms that include artificial neural networks (ANNs), support vector 

machines (SVM) and decision trees (DT) are used. In addition, fuzzy inference 

system (FIS), and hybrid methods are evaluated. At the same time, genetic 

algorithm (GA), particle swarm optimization (PSO), fireworks algorithm (FWA) 

and grid search are chosen to optimize parameters and improve recognition 

efficiency.(6, 7, 13, 14, 15, 16) 

From above, the accurate recognition of abnormal patterns makes the control 

chart an important diagnostic technique indicative of operational deviations, to 

enhance the quality of automated systems, processes, and products.  

Advancements diagnostic technologies led to the Predictive Maintenance (PdM) 

strategy. PdM is a technology used to predict the failure of a machine 

component so that schedule maintenance can be performed just in time to 

prevent failure and production downtime. Condition-based maintenance (CBM) 

is an efficient method for PdM. This technique utilizes sensors directly 

integrated into the specific machinery that collect a wide variety of real-time 

measurements, including vibration analysis, acoustic emission, electrical 

signature analysis, thermography, tribology, flow rates, temperature, and 

pressure. A component’s degradation state is evaluated based on deviations 

from normal running conditions.(17, 18, 19, 20, 21)  

Remaining useful life (RUL) is a prognostic technique. This is defined as the 

length of time a machine can operate before tool replacement or repair. To 

estimate RUL, data-driven method is used, this involve diagnosing the health of 

a machine and predicting potential issues.(19, 20, 21, 22, 23, 24) 

Thus, by combining the statistical process control and Industry 4.0 technologies 

- sensors, data acquisition systems, big-data collection, and data-driven 
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algorithm - to monitor equipment performance in real time, remaining useful life 

can be satisfactory evaluated.(20, 21, 22, 23, 24)  

The purpose of this work was to design Individuals and moving range (X-MR) 

chart for monitoring the superheating steam temperatures in a thermoelectric 

power plant. Variation patterns on the control chart and the possible assignable 

causes were identified using decision rules and test zones. Finally, the area-

threshold for the remaining useful life was evaluated.  

 

 

Materials and methods  

The research was carried out using the following steps.(25) 

Phase I. Statistical Control Chart design.  

a) Choose the appropriate metrics 

Quality characteristics were chosen based on Rankine cycle analysis, these are 

the boiler pressure (Pv), the superheating steam temperatures before the fourth 

reheat stage (Tv-SH#4), and the condenser pressure (Pv*).(25)  

b) Select the control chart 

Individuals and moving range (X-MR) chart was selected because the quality 

characteristics are continuous; and an automated inspection and measurement 

technology is used.(2, 4) 

c) Sampling and data collection 

Data were obtained every two hours for eight months of operations using 

Supervisory Control and Data Acquisition (SCADA) System, at a Cuban 

thermoelectric power plant. The sample size was 2163 individual points, using 

Z=1.96, two-sided test, 95% confidence level, assuming a standard deviation         

σ(x) = 0,759 3, and error e = 0, 032.(25) 

d) Determination of control limits or Data processing. 

Control limits of an individuals and moving range (X-MR) chart were determined 

from the average, mean range and standard deviation. The boiler pressure (Pv) 

was selected as the guiding variable.(1, 2, 3, 4, 25) 

e) Recalculation of control limits or Data filtering 

Measurement points beyond the control limits were removed from the data set 

after analyzing the possible assignable causes. The elimination and 



Rojas-Vargas, et. al, / Tecnología Química, Vol. 46 (2026), pp.5-19 

  9 
 

 

recalculation process were repeated while one or more points exceeded the 

new limits. 

f) Checking control chart assumptions 

Assumption of normality was checked using StatGraphic Centurion v.19.0, by 

graphical and numerical methods. The standardized Skewness statistic and the 

log likelihood statistic were also evaluated for the comparison of alternative 

distributions. 

Phase II. Prospective quality characteristic monitoring 

g) Quality characteristic monitoring and recognizing control chart patterns 

The points beyond the control limits, abnormal patterns within the limits, and 

special causes of variation were analyzed (table 1).  

 

Table 1- Non-random patterns and their description 

 

A software application was performed for the automatic CCPs recognition, both 

simple and concurrent. This application consisted of a decision tree (DT), 

tendency and dispersion statisticians, and shape features such as: mean value, 

standard deviation, determination coefficient of the least-square line, slope and 

sign, common difference, and average of three successive mensuration. 

g) Identification of root assignable cause 

When an unnatural pattern is identified on the control chart, it indicates that the 

process is out-of-control. Therefore, it is necessary to identify the potential root 

cause linked to the pattern and developing corrective actions to improve the 



Rojas-Vargas, et. al, / Tecnología Química, Vol. 46 (2026), pp.5-19 

  10 
 

 

process.(2, 4, 12) In this work, the relative frequency distribution for the simple 

pattern, and conditional probability for concurrent patterns were                    

determined (1). (1) 

 

 

 

h) Stability index or data normalization 

The stability index (1-St) is expected to tend to one at each instant, which 

means that the variation due to special - causes is minimal (2).(2) 

 

 

 

where  

SPRUL is the number of special points indicating special - cause variation without 

double count, and TP is the number of total points, both in the same period. 

From table 1, R-1, R-5, and R-6 patterns contribute SPRUL = 1; however, the 

remaining patterns contribute from the last point onward, for example, the trend 

(R-3) consists of six or more points, so it contributes SPRUL = SP – 5. When (1-

St) is less than 95%, it becomes impossible to address all the special signals. In 

these cases, it is better to analyze the main patterns in the chart, generate 

conjectures about their causes, and proceed to corroborate those conjectures.(2) 

i) Area-Threshold for Remaining Useful Life. Health Indicator 

The area-threshold (ARUL) between the functions f(t)=1 and f(1-St) was 

determined using the definite integral method. Subsequently, using the area 

contributed by each significant process variable, the area-threshold for 

remaining useful life (RUL) was obtained. 

 

Results and discussion 

Superheating steam temperatures (Tv-SH#4) were obtained every two hours for 

eight months from the SCADA real-time database. Two months were excluded 

from the data set because these affected the normality assumptions. The 
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control chart was finally designed with 2163 measurements, mean range (Ṝm) 

0.86 ºC, standard deviation 0.76 ºC, mean value (μ) 521,73 ºC, lower control 

limit (LCL, -3) 519.31 ºC, and upper control limit (UCL, +3) 523,76 ºC                

(figure 1). 

 

 
Fig. 1 - Statistical control chart of superheating steam temperatures (Tv-SH#4, °C).  

2163 individual points. Sampling every two hours 

 
In addition, the temperature was distributed above the central line (CL) for                  

52,9 % of measurements and below CL 47,1 %, within Zone-A 10.5 %, Zone-B 

16,8 %, Zone-C 25,6 %, Zone-D 22,2 %, Zone-E 15,3 %, and Zone-F 9.6 %. 

According to design parameters, Tv is 525 °C at 13,70 MPa.  

Variation patterns were determined on the control chart such as downward and 

upward shift (R-2), upward and downward trend (R-3), large shift (R-5), small 

shift (R-6), and stratification (R-7) (figure 2). The unnatural pattern shift-trend 

(R-2) had the highest number of special points, with a relative frequency of 

88,94 %, due to possible general causes: poor standardization, changes in work 

procedures, and failures in the industrial network (table 2).(2, 4, 12) 

Concurrent patterns reached 5.9 % conditional probability, due to combinations 

of Nelson’s run rules: shift-trend, large shift, small shift, and stratification                

(table 3). The stability index (1-St) in the Phase I was 59,8 %, indicating an out-

of-control statistic process.  
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Fig. 2 – Variation patterns on the control chart of superheating  

steam temperatures 

 

Table 2- Phase I. Unnatural pattern Tv-SH4 (relative frequency, %) 

 

 

Table 3- Phase I. Combination of patterns Tv-SH4 (conditional probability, %)  

 

 

Checking assumptions of normality 

Normality was check using StatGraphic Centurion v.19.0. Density trace and 

frequency histogram show a shape like a Gaussian bell curve with moderate 

asymmetry (figure 3a, b). The data were arranged on the trend line in the 

symmetry graph, but points negatively skewed between 0.8-2.4 can be seen 

(figure 3c). Though, the points were located on the curve cumulative distribution 

for the standard normal curve (figure 3d). 
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Fig. 3 – Normality check for the superheating steam temperatures (Tv-SH#4) 

 

The temperature was modeled by normal distribution with 95% confidence 

according to Kolmogorov-Smirnov. However, modified Kolmogorov-Smirnov D, 

Cramer-Von Mises W^2, and Anderson-Darling A^2 tests were not satisfactory 

(p-value < 0.01). This could be due to non-random variation within the limits on 

the control chart. Therefore, the sample size must be increased.  

In addition, standardized Skewness statistic obtained a value of -1,615 3 in the 

expected range [-2; 2]. According to the log likelihood statistic, the best fitting 

distribution is the normal distribution. Then, the assumptions of normality were 

accepted with the above exceptions. 

 

Quality characteristic monitoring 

X-Rm chart was applied for monitoring Tv-SH#4 for 1166 h consecutive. 

Individual points were distributed above the central line (CL) 79,4 % of 

measurements and below LC 20,6 %, within Zone-A 3,9 %, Zone-B 33,8 %, 

Zone-C 43,9 %, Zone-D 13,4 %, Zone-E 3,4 %, and Zone-F 1,7 % (figure 4). 
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Fig. 4 - Superheating steam temperatures (Tv-SH#4, °C), sampling every one hour  

 

The points beyond the control limits (R-1) reached 8,5 % relative frequency, and 

the shift-trend pattern (R-2) 77.9 %, due to poor standardization and set-up 

changes. The stability index resulted 66,3 % (table 4). 

 

Table 4- Phase II. Unnatural pattern Tv-SH4 (relative frequency, %) 

 

 

Area-Threshold for the Remaining Useful Life 

The stability index (1-St) was calculated for four stages of continuous operation. 

The operating variables and control limits were boiler pressure Pv = [13,22, 

13,44] MPa (25), superheating steam temperatures Tv = [519,21, 523,76) °C, and 

condenser pressure Pv* = [3,63, 5,47] MPa. These variables reached the 

following values assumed as a shut-down system: Pv = [0,10, 12,44] MPa,                   

Tv = [191,1, 515,8] ºC, Pv* = [1,52, 3,63) ∪ (5,47, 6,31] MPa (figure 5). 
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Fig. 5 – Stability index (1-St) for Tv-SH#4 (°C) versus Remaining Useful Life (RUL)  

 

In figure 5, the stability index (1-St) fluctuated with ups and downs. It shows 

periods of decline (1-St) < 0,95, characteristic of an unstable process due to 

special causes of variation, followed by periods of rise with a predominance of 

normal points (NP). The area-threshold (permissible value) for the Remaining 

Useful Life (RUL) was determined between the functions f(t)=1 and f(1-St). It 

ranged from 581 to 1193 u², with a standard deviation of 285 u² relative to the 

WECO standards (figure 6). 

 

 
Fig. 6 - Area-Threshold (ARUL) for the Remaining Useful Life (RUL), WECO 

rules 

 

It should be noted that scheduling maintenance cycles in electrical grid is a 

complex activity due to the close coordination required by different 

stakeholders. This is influenced not only by the quality and durability of the 

equipment components, maintenance effectiveness, environmental conditions, 

and costs; but decision-makers also consider balancing system availability and 

potential failures (26, 27). A summary of the area thresholds for the WECO rules, 

the Nelson run, and the AIAG is presented in table 5. 
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Table 5- Area-Threshold for the Remaining Useful Life (RUL) 

 

 

It was suggested that superheating steam temperatures control limits be 

implemented, and appropriate corrective measures be taken to increase the 

stability index in operations. This project continues with the goal of analyzing 

new variables, extending the evaluation period, and predicting Remaining 

Useful Life. It is expected to contribute to the implementation of a condition-

based maintenance strategy, aimed at achieving proper utilization of installed 

thermal capacity. 

Conclusions 

Individuals and moving range (X-MR) chart was designed to monitor 

superheating steam temperatures with 2163 individual points, central line (CL) 

521,73 ºC, lower control limit (LCL) 519,31 ºC, and upper control limit (UCL) 

523,76 ºC. 

Abnormal patterns were determined, with the shift-trend having the highest 

relative frequency due to possible general causes: poor standardization, 

changes in work procedures, and failures in the industrial network. Concurrent 

patterns, a combination of two single patterns, reached a 5,9 % conditional 

probability.  

The area-threshold for remaining useful life was evaluated using decision rules 

and test zones, representing a range 581 to 1193 u2 and standard deviation 285 

u2 for WECO rules.  
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