In silico analysis of a mammalian cell culture in two stage fed-batch bioreactors

  • Diana D. Alcalá Galiano-Morell Departamento de Ingeniería Química. Universidad de Camagüey “Ignacio Agramonte Loynaz”, Camagüey, Cuba
  • Héctor E. Sánchez-Vargas Departamento de Ingeniería Química. Universidad de Camagüey “Ignacio Agramonte Loynaz”, Camagüey, Cuba
  • Mariela Rizo-Porro Departamento de Ingeniería Química. Universidad de Camagüey “Ignacio Agramonte Loynaz”, Camagüey, Cuba
  • Luis B. Ramos-Sánchez Departamento de Ingeniería Química. Universidad de Camagüey “Ignacio Agramonte Loynaz”, Camagüey, Cuba
Keywords: Cell culture, monoclonal antibodies, optimization, two-stage semi-continuous bioreactor

Abstract

The objective of this work is to compare a two-stage fed-batch culture system of mammalian cells with a single culture system. In silico process-design techniques were used in order to intensify the production of monoclonal antibodies in both cases before comparing them. As case study a structured kinetic model reported in literature for an industrial process of monoclonal antibodies (MAb) harvested from cultures of hybridoma cells was selected. Computational simulation was carried-out using MATLAB software as computing platform. Results demonstrated that in this particular case a two-stage fed-batch culture system produces higher productivities in MAb production compared to simple stage systems. In double stage systems, having a fraction of volume of the first stage of 80 %, an increment of 58 % in MAb concentrations and 30 % in productivity were obtained when compared to a single stage system.

References

AMABLE, P.,BUTLER, M. "Cell metabolism and its control in culture". Animal Cell Technology: From Biopharmaceuticals to Gene Therapy.UK:Taylor & Francis Group, 2008. p. 75-110.

AMRIBT, Z., et al. "Macroscopic modelling of overflow metabolism and model based optimization of hybridoma cell fed-batch cultures". Biochemical Engineering Journal. 2013,Vol.70, p. 196–209.

BERRIOS, J., et al. "Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: Metabolic analysis and scale-up simulation.". Chemical Engineering Science. 2011,Vol.66, p. 2431-2439.

CHICO, E. "Technological challenges for a better accessibility of immunotherapeutics ".Biomanufacturing challenges of immunotherapy, La Habana, Cuba, 2013.

CHICO, E., et al. "Bioreactors for animal cells". Animal Cell Technology: From Biopharmaceuticals to Gene Therapy.New York and Abingdon:Taylor & Francis Group, 2008. p. 221-258.

DEY, S., et al. "Fermenter balancing for semi-continuous, multi-tank mammalian cell culture processes". Chemical Engineering Journal. 1997,Vol.65, p. 123-132.

ELVIN, J. G., et al. "Therapeutic antibodies: Market considerations, disease targets and bioprocessing". International Journal of Pharmaceutics. 2013,Vol.440, p. 83-98.

FENGE, C.,LÜLLAU, E. "Cell culture bioreactors". Cell culture technology for pharmaceutical and cell based therapies.United States of America:Taylor & Francis Group, 2006. p. 155-224.

FONTANET, L., et al. "La excelencia operacional en la industria biotecnológica. Una aproximación desde las operaciones industriales del CIM". Bioprocesos. 2011.

GERNAEY, K.,GANI, R. "A model-based systems approach to pharmaceutical product-process design and analysis". Chemical Engineering Science. 2010,Vol.65, p. 5757-5769.

GÓMEZ, L. G.,VILLALOBOS, M. A. "Ajuste de modelos cinéticos en el proceso de producción del anticuerpo monoclonal Nimotuzumab". Departamento de Ingeniería Química, 2014, 63 p.

GONZALEZ, L. M. "Evaluación del desempeño técnico económico y ambiental de la producción de Nimotuzumab en el Centro de Inmunología Molecular". Departamento de Ingeniería Química, 2014, 73 p.

HO, Y., et al. "Computational approach for understanding and improving GS-NS0 antibody production under hyperosmotic conditions". Journal of Bioscience and Bioengineering. 2012,Vol.113, p. 88-98.

KIPARISSIDES, A., et al. "Closing the loop in biological systems modeling. From the in silico to the in vitro". Automatica. 2011,Vol.47, p. 1147-1155.

KOMPALA, D. S.,OZTURK, S. S. "Optimization of high cell density perfusion bioreactors". Cell Culture Technology for Pharmaceutical and Cell-based.United States of America:Taylor & Francis Group, 2006. p. 387-416.

LAM, C., et al. "Cell Cycle Modelling for Off-line Dynamic Optimisation of Mammalian Cultures".18th European Symposium on Computer Aided Process Engineering-ESCAPE 18, 2008.

POTVIN, G., et al. "Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review". Biochemical Engineering Journal. 2012,Vol.64, p. 91-105.

SÁNCHEZ, H., et al. "Use of selectivity factor on cell-culture systems conceptual design". Biotecnología Aplicada. 2016,Vol.2. num 3, p. 3301-3306.

WEBER, W., et al. "A genetic redox sensor for mammalian cells". Metabolic Engineering. 2006,Vol.8, p. 273-280.

ZADEH, K. "A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms". Computers in Biology and Medicine. 2011,Vol.41, p. 24-36.

Published
2017-09-04
How to Cite
Galiano-Morell, D., Sánchez-Vargas, H., Rizo-Porro, M., & Ramos-Sánchez, L. (2017). In silico analysis of a mammalian cell culture in two stage fed-batch bioreactors. Chemical Technology, 37(3), 571-588. https://doi.org/10.1590/2224-6185.2017.3.%x
Section
Artículos