Nutritional and bioactive compounds of Solanum quitoense Lam (Quito quito), native fruit from the andeswith high nutrients potential

  • Antonio José Obregón-La Rosa Universidad Nacional Mayor de San Marcos, Escuela de Ciencia de Alimentos, Facultad de Farmacia y Bioquímica Jr. Lima, Perú
  • Gladys Constanza Arias-Arroyo Universidad Nacional Mayor de San Marcos, Escuela de Ciencia de Alimentos, Facultad de Farmacia y Bioquímica Jr. Lima, Perú
  • María Dolores López-Belchi Universidad de Concepción, Facultad de Agronomía, Barrio Universitario, Concepción, Chile
  • Michael Bracamonte-Romero Universidad Nacional Mayor de San Marcos, Escuela de Ciencia de Alimentos, Facultad de Farmacia y Bioquímica Jr. Lima, Perú
  • Arturo Arones-Limaymanta Universidad Nacional Mayor de San Marcos, Escuela de Ciencia de Alimentos, Facultad de Farmacia y Bioquímica Jr. Lima, Perú
Keywords: solanum quitoense; phenolics compounds; carotenoids; antioxidant capacity; quito quito.

Abstract

The content of nutritional compounds, bioactive and antioxidant capacity of quitoquito (Solanum quitoense Lam) were determined in the present investigation. Highlights the fiber content (1,87 ± 0,06%) and minerals such as potassium (40,6 ± 0,21 mg / 100 g) and iron (34,6 ± 0,21 mg / kg) which are founded in greater proportion, such as macro and microelements respectively. Among the bioactive compounds, the quitoquito fruit presented high levels of vitamin C (30,1 + 0,93 mg / 100g), total polyphenols (67,24 + 0,58 mg equivalent of gallic acid / 100 g) and carotenoids (0,74 + 0,07 mg β carotene / 100 g). The antioxidant capacity was determined by the DPPH, ABTS and FRAP methods, where the highest value corresponded to ABTS (888 ± 21,62 μmol trolox / 100 g) in relation to DPPH (280 ± 16,19 μmol trolox / 100 g) and FRAP (197 ± 12,59 μmol trolox / 100 g) in that order. The results obtained confirm that quitoquito is a promising source of nutritional and bioactive compounds to be used as a functional ingredient

References

1. NATIONAL RESEARCH COUNCIL. Naranjilla (Lulo). In Lost crops of the Incas: Little known plants of the Andes with promise of the world cultivation; National Academy Press: Washington, 1989; pp 267-275. ISBN. 0309074614
2. RAMÍREZ, Fernando; KALLARACKAL, Jose; DAVENPORT, Thomas L. Lulo (Solanum quitoense Lam.) reproductive physiology: A review. Scientia horticulturae, 2018, 238, pp. 163-176.ISSN: 0304-4238
3. HEISER, Charles B. The naranjilla (Solanum quitoense), the cocona (Solanum sessiliflorum) and their hybrid. En Gene conservation and exploitation. Springer, Boston, MA, 1993. pp. 29-34. ISBN 978148991138-4
4. ANDRADE-CUVI, M. J., et al. Caracterización de la naranjilla (Solanumquitoense) común en tres estados de madurez. Revista Iberoamericana de Tecnología Postcosecha, 2015, 16 (2), pp. 215-221. ISSN: 1665-0204
5. CERÓN, Ivonne; HIGUITA, J.; CARDONA, C. Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector, 2010, 5 (2011), pp. 17-26. ISSN 1909 – 7891.
6. ACOSTA, Ó.; PÉREZ, A., M. VAILLANT, Fabrice. Chemical characterization, antioxidant properties, and volatile constituents of naranjilla (Solanum quitoense Lam.) cultivated in Costa Rica. Archivos latinoamericanos de nutrición, 2009, 59 (1), pp. 88-94. ISSN 0004-0622.
7. GANCEL, A L., et al. Identifying carotenoids and phenolic compounds in naranjilla (Solanum quitoense Lam. var. Puyo hybrid), an Andean fruit. Journal of agricultural and food chemistry, 2008, 56 (24), pp. 11890-11899.ISSN 0021-8561.
8. VASCO, C.; RUALES, J.; KAMAL-ELDIN, A.. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food chemistry, 2008, 111 (4), pp. 816-823.ISSN 0308-8146.
9. AOAC. OFFICIAL METHODS OF ANALYSIS OF THE ASSOCIATION OF OFFICIAL ANALYTICAL CHEMIST, 15th ed., Gaithersburg, Maryland; 2005.
10. CENTRO NACIONAL DE ALIMENTACIÓN Y NUTRICIÓN-CENAN. Tablas Peruanas de composición de Alimentos. Instituto Nacional de Salud, Lima; 2009.ISBN 978-9972-857-73-7.
11. AOAC OFFICIAL METHODS OF ANALYSIS. Association of Official Analytical Chemists. Washington D.C, US; 2007.
12. BENASSI, M. T.; ANTUNES, A. J. A comparison of meta-phosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Arq. Biol. Tecnol., 31 (4), pp. 507-513, 1988.ISSN 0365-0979
13. ROMERO ROMÁN, M. E., et al. Nuevas fuentes de antioxidantes naturales: caracterización de compuestos bioactivos en cinco frutos nativos de Chile.Perfiles, 2019, 22(2), pp. 34-41. ISSN 2477-9105
14. SINGLETON, V. L.; ROSSI, Joseph A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 1965, 16 (3), pp. 144-158. ISNN 0002-9254
15. TALCOTT, S. T.; HOWARD, L. R. Phenolic autoxidation is responsible for color degradation in processed carrot puree. JournalofAgricultural and FoodChemistry, 1999,47 (5), pp. 2109-2115. ISSN 0021-8561
16. BRAND-WILLIAMS, W.; CUVELIER, M. E. BERSET, C. L. W. T. Use of a free radical method to evaluate antioxidant activity. LWT-Foodscience and Technology, 1995, 28 (1), pp. 25-30. ISSN: 0023-6438
17. RE, R., et. al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 1999, 26 (9-10), pp. 1231-1237. ISSN0891-5849.
18. BENZIE, I., FF; STRAIN, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 1996, 239 (1), pp. 70-76. ISSN: 0003-2697
19. WILLS, R. B. Howe, et al. Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals. CABI, 2016. ISBN 9781786391841.
20. MEJÍA, D., et al. Caracterización fisicoquímica de la variedad castilla del lulo (Solanumquitoense Lam) en seis estados de maduración. Vitae (Medellín), 2012, 19 (2), pp.157-165.ISSN 0121-4004.
21. ALMENAR, M. Inmaculada Viñas, et al. Poscosecha de pera, manzana y melocotón. Mundi-Prensa Libros, 2013. ISBN 978-8484765493.
22. LETERME, P., et al. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 2006, 95(4), pp. 644-652.ISSN 0308-8146.
23. REYES GARCÍA, M.; GÓMEZ-SÁNCHEZ PRIETO, Iván; ESPINOZA BARRIENTOS, C. Tablas peruanas de composición de alimentos. 2017. 10ma ed., Lima: Ministerio de Salud, Instituto Nacional de Salud. ISBN 978-612-310-117-6
24. GÓMEZ-MERINO, F. C., et al. Lulo (Solanum quitoense [Lamarck.]) as new landscape crop in the Mexican agro-ecosystem. Revista Mexicana de Ciencias Agrícolas, 2014, 5 (9), pp. 1741-1753.ISSN 2007-0934.
25. CONTRERAS-CALDERON, J., et al. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research international, 2001, 44 (7), pp.2047-2053. ISSN 0963-9969.
26. THAIPONG, Kriengsak, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 2006, 19(6-7), pp. 669-675.ISSN 0889-1575.
27. MORENO, Elizabeth; ORTIZ, Blanca L.; RESTREPO, Luz P. Contenido total de fenoles y actividad antioxidante de pulpa de seis frutas tropicales. Revista Colombiana de Química, 2014,43 (3), pp. 41-48. ISSN 0120-2804.
28. PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. Metodología para la evaluación de capacidad antioxidante en frutas y hortalizas. En V Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones. Cartagena, 2007. pp. 1150-60.
Published
2021-03-03
How to Cite
Obregón-La Rosa, A. J., Arias-Arroyo, G. C., López-Belchi, M. D., Bracamonte-Romero, M., & Arones-Limaymanta, A. (2021). Nutritional and bioactive compounds of Solanum quitoense Lam (Quito quito), native fruit from the andeswith high nutrients potential. Chemical Technology, 41(1), 92-108. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5182
Section
Artículos