Anaerobic digestion of the rice drying residue in semicontinuous regime

  • Lisbet Mailin López-González Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus. Cuba
  • Mildre Zayas-González Departamento de Procesos Agroindustriales, Facultad de Agronomía, Universidad de Ciego de Ávila “Máximo Gómez Báez”. Ciego de Ávila, Cuba
  • Julio Pedraza-Garciga Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus. Cuba
Keywords: Anaerobic digestion; anaerobicco digestion; biogas; rice drying residue.

Abstract

In the present work the anaerobic monodigestion process of rice drying residue (RS) and its codigestion with cattle (RV) and pig (RP) residues in semicontinuoregime was evaluated. The RS was studied on a laboratory scale in a continuous stirred tank reactor (CSTR) in mesophilic regime (37 ºC). The organic loading rate (OLR) was increased from 0, 5 to 3 g VS/Ld in monodigestion, and then kept at 3 g VS/Ld in the codigestion study for the mixture RS96:RV2:RP2, RS94:RV4:RP2 and RS92:RV6:RP2 (based on the % volatile solids in the mixture). The best biogas yield (ybiogas) was obtained during codigestion for the RS92:RV6:RP2 mixture with a value of 705, 48 L/kgVS and a biogas productivity of 2,42 Lbiogas/ Lreactor for a OLR of 3 gVS/Ld. The ybiogas was 28% higher than RS in monodigestion. Results show, an improvement in the AD process of RS by codigestion with RV and RP.

References

1.SUÁREZ-HERNÁNDEZ, J., SOSA-CÁCERES, R., et al. “Evaluation of the biogas production potential in Cuba”. Pastos y Forrajes. 2018, 41 (2). pp. 79-85. ISSN 08640394.
2.CONTRERAS, L. M. Digestión anaerobia de residuos de la agroindustria arrocera cubana para la producción de biogás. Universidad Central “Marta Abreu” de Las Villas, 2013.
3.DÍAZ IGLESIA, J. A., MIRANDA CABALLERO, A., et al. “Metodología para obtención de biogás a partir de residuos de cosechas del arroz utilizando como inóculo aguas residuales”. Avances. 2016, 18 (4). pp. 325-333. ISSN 1562-3297.
4.CONTRERAS, L. M., SCHELLE, H., et al. “Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Water Science and Technology”. 2012, 65 (6). pp. 1142-1149. ISSN 0273-1223. https://. doi.org/10.1016/j.biortech.2019.122725
5.NGAN, N. V. C., CHAN, F. M. S., et al. “Anaerobic Digestion of Rice Straw for Biogas Production”. En: Cham: M. Gummert, N. V. Hung, P. Chivenge and B. Douthwaite Sustainable Rice Straw Managementm, 2020, pp. 65-92. ISBN 978-3-030-32373-8.
6.JABEEN, M., ZESHAN, et al. “High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates”. International Biodeterioration & Biodegradation. 2015, 102. pp. 149-153. ISSN 0964-8305. https://doi.org/10.1016/j.ibiod.2015.03.023.
7. ZHAN-JIANG, P., JIE, L., et al. “High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production”. Journal of Northeast Agricultural University (English Edition). 2014, 21 (4). pp. 61-66. ISSN 1006-8104. https://doi.org/10.1016/S1006-8104(15)30021-0.
8. MEI, Z., LIU, X., et al.”Anaerobic Mesophilic Codigestion of Rice Straw and Chicken Manure: Effects of Organic Loading Rate on Process Stability and Performance. Appl Biochem Biotechno”l. 2016. pp. 846–862. ISSN 1559-0291. http://10.1007/s12010-016-2035-.
9.LÓPEZ GONZÁLEZ, L. M., RUIZ MANSO, J. M., et al. “Codigestión anaerobia del residuo del secado del arroz y excreta porcina en sistema discontinuo”. Revista Tecnología Quimica. 2019, 39 (2). pp. 286-300. ISSN 2224-6185.
10.HARYANTO, A., SUGARA, B. P., et al. Anaerobic Co-digestion of Cow Dung and Rice Straw to Produce Biogas using Semi-Continuous Flow Digester: Effect of Urea Addition. IOP Conference Series: Earth and Environmental Science [en línea]. 2018, 147. pp. 755-1307. http://10.1088/1755-1315/147/1/012032.
11.WANG, X., LU, X., et al. “Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLOS ONE” [en línea]. 2014, 9 (5). pp. 97-265. [Consultado: 18/5/2019]. ISSN 1932-6203. http://10.1371/journal.pone.0097265.
12.KAINTHOLA, J., KALAMDHAD, A. S., et al. Enhanced methane production from anaerobic co-digestion of rice straw and hydrilla verticillata and its kinetic analysis. Biomass and Bioenergy [en línea]. 2019, 125. pp. 8-16. [Consultado: 1/6/2019]. ISSN 0961-9534. https://doi.org/10.1016/j.biombioe.2019.04.011.
13.SHEN, F., LI, H., et al. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresour Technol [en línea]. 2018, 250. pp. 155-162. [Consultado: 5/6/2019]. ISSN 1873-2976. http://doi.org/10.1016/j.biortech.2017.11.037.
14.PRAJAPATI, K. K., PAREEK, N., et al. Pretreatment and Multi-Feed Anaerobic Co-digestion of Agro-Industrial Residual Biomass for Improved Biomethanation and Kinetic Analysis. Frontiers in Energy Research [en línea]. 2018, 6 (111). pp. without. [Consultado: 23/10/2018]. ISSN 2296-598X. 10.3389/fenrg.2018.00111.
15.APHA, AWWA, et al. Standard Methods for the Examination of Water and Wastewater. 19th Edition. Washington DC, USA: American Public Health Association/America Water Works Association/Water Environment Federation, 1995. ISBN 78-0875532233.
16.VAN SOEST, P., ROBERTSON, J., et al. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. [en línea]. 1991, 74. pp. 3583–3597. [Consultado: 18/11/2019]. ISSN 0022-0302. http///doi.org/10.3168/jds.S0022-0302(91)78551-2.
17.YADVIKA, SANTOSH, et al. Enhancement of biogas production from solid substrates using different techniques––a review. BioresourTechnol [en línea]. 2004, 95 (1). pp. 1-10. [Consultado: 5/11/2019]. ISSN 0960-8524. https://doi:10.1016/j.biortech.2004.02.010.
18.WEILAND, P. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology [en línea]. 2010, 85 (4). pp. 849-860. [Consultado: 5/11/2019]. ISSN 0175-7598. https://10.1007/s00253-009-2246-7.
19.ZHOU, J., YANG, J., et al. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study. Bioresource Technology [en línea]. 2017, 244. pp. 865-871. [Consultado: 20/10/2019]. ISSN 0960-8524. http://dx.doi.org/10.1016/j.biortech.2017.07.146.
20.CHEN, Y., CHENG, J. J., et al. Inhibition of anaerobic digestion process: A review. BioresourTechnol [en línea]. 2008, 99 (10). pp. 4044-4064. [Consultado: 20/10/2019]. ISSN 0960-8524. http://dx.doi.org/10.1016/j.biortech.2007.01.057.
21.LEITÃO, R. C., VAN HAANDEL, A. C., et al. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour Technol [en línea]. 2006, 97. pp. 1105-1118. [Consultado: 10/10/2019]. ISSN 0960-8524. http://dx.doi.org/10.1016/j.biortech.2004.12.007.
22.AHRING, B. K., SANDBERG, M., et al. Volatile fatty acids as indicators of process imbalance in anaerobic digestors Appl. Microbiol. Biotechnol. [en línea]. 1995, 43 (3). pp. 559-565. [Consultado: 10/10/2019]. ISSN 1432-0614. http://doi.org/10.1007/BF00218466.
23.CHENG, X.-Y. y ZHONG, C. Effects of feed to inoculum ratio, co-digestion, and pretreatment on biogas production from anaerobic digestion of cotton stalk. Energy Fuels [en línea]. 2014, 28. pp. 3157-3166. [Consultado: 15/10/2019]. ISSN 0140-6701. http://doi.org/10.1021/ef402562z.
24.MUSTAFA, A. M., POULSEN, T. G., et al. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy [en línea]. 2016, 180. pp. 661-671. [Consultado: 5/10/2019]. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2016.07.135.
25.LI, D., LIU, S., et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresource Technology [en línea]. 2015, 187. pp. 120-127. [Consultado: 22/10/2019]. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2015.03.040.
26.PALMQVIST, E. y HAHN-HAGERDAL., B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol [en línea]. 2000, 74 (1). pp. 25-33. [Consultado: 5/11/2019]. ISSN 0960-8524. http://doi.org/10.1016/S0960-8524(99)00161-3.
27. MOSCHE, M. y JORDENING, H. Detection of very low saturation constants in anaerobic digestion: influences of calcium carbonate precipitation and pH. Applied Microbiology & Biotechnology [en línea]. 1998, 49 (6). pp. 793-799. [Consultado: 25/11/2020]. ISSN 1432-0614. http://doi.org/10.1007/s002530051248
28.BARREDO, M. y EVISON, L. Effect of propionate toxicity on methanogen-enriched sludge, methanobrevibacter smithii, and methanospirillum hungatii at different pH values. Applied & Environmental Microbiology [en línea]. 1991, 57 (6). pp. 1764-1769. [Consultado: 20/10/2019]. ISSN 1098-5336. http://10.1128/AEM.57.6.1764-1769
Published
2021-03-03
How to Cite
López-González, L. M., Zayas-González, M., & Pedraza-Garciga, J. (2021). Anaerobic digestion of the rice drying residue in semicontinuous regime. Chemical Technology, 41(1), 141-156. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5185
Section
Artículos