Caustic stripper proposal to reduce gaseous emissions in the sulfur recovery at Cienfuegos Refinery S.A
Abstract
The selected technology for the sulfur recovery in the Cienfuegos oil`refinery does not achieve the quality parameters required for said process as it causes gaseous SO2 emissions outside the established regulatory framework. This situation will be aggravated by the inclusion of new process units that will increase said emissions. In this sense, the objective of this research is to propose a caustic stripper for the treatment of waste gases in the unit that allows compliance with the process parameters and reduces gaseous emissions. A bibliographic study is carried out on the waste gas treatment processes and the different technologies that are used. Based on this study, the main construction and operational aspects that wet strippers must have are analyzed. The design and operation parameters of the stripper are presented, as well as its constructive characteristics, laying the foundations for the evaluation. Then the evaluation methodology of the packed tower is presented, obtaining the simulation model using the ProMax® 2.0 Simulator, which allows defining its operating range, through sensitivity analysis. Finally, the technological improvement proposal is economically evaluated with the dynamic profitability indicators VAN, TIR and PRD. As a result, it is expected to reduce atmospheric emissions below 150 mg / Nm3 as SO2, reduce energy consumption in the sulfur unit and the exposure of the general population to gaseous emanations.
References
2. LOBELLES, G.O. Economía ecológica y gestión tecnológica integral de aguas sulfurosas en la refinería de Cienfuegos para minimizar emisiones. Tecnología Química. 2019, 39(1), 22-43. ISSN: 2224-6185. https://tecnologiaquímica.uo.edu.cu.
3. POLLUTIONS SYSTEMS. Air Pollutions Control Systems. 2015. Pollution Systems Industrial Air Solutions: https://www.pollutionsystems.com/wet-scrubbers.html
4. LOBELLES, G.O. Metodología para la gestión tecnológica integral de aguas sulfurosas en la refinería de Cienfuegos con enfoque de economía ecológica. Tesis Doctoral, Facultad de Química y Farmacia, Universidad Central Martha Abreu de las Villas. Santa Clara. Cuba. 2017.
5. U.S EPA. Rule 62-204.800, 2010. F.A.C. Subpart Ja-Standards of Performance for Petroleum Refineries for Which Construction, Reconstruction, or Modification Commenced After May 14, 2007. Emissions limitations. Paragraphs (f) (1) or (2), pp. 4-6. Environmental Protection Agency. 2010. Washington, DC: US EPA. Available online at http://www.epa.gov/epacfr40/chapt-I.info/.
6. NOM-148-SEMARNAT. Norma Oficial Mexicana. Contaminación atmosférica. Recuperación de azufre proveniente de los procesos de refinación del petróleo. Secretaría de Medioambiente y Recursos Naturales. SEMARNAT, 2007. México, D.F: DIARIO OFICIAL. Tercera Edición, 2-3, inciso 4.4.
7. WAUQUIER, J.P. Distillation, Absorption and Stripping in the Petroleum Industry. In Separation Processes. Editions TECHNIP. Institut Français du Pétrole. Paris. 2001. Chapter 5: pages 241-251. ISBN: 2-7108-0761-0. Series ISBN 2-7108-0686-X.
8. GARY, H. J.; HANDWERK, G. E. Crude Distillation. Petroleum Refining-Technology and Economics. Fourth Edition. Editorial Marcel Dekker, Inc. New York. USA. 2006. Chapter 4: pages. 46-49. ISBN: 0-8247-0482-7.
9. OLMEDO TOLEDO T. Análisis y selección de la mejor tecnología del proceso de recuperación de azufre para gases de cola en refinerías de México. Universidad del ISTMO. 2010. Santo Domingo TEHUANTEPEC, OAXACA.
10. IFC (International Finance Corporation). Environmental, Health, and Safety Guidelines for Petroleum Refining. 2007. Page 13. Table 1. Air emissions levels for petroleum refining facilities. World Bank Group. Disponible en línea http://www.ELAW.org. Environmental Law Alliance Worldwide.
11. ZARENEZHAD B & HOSSEINPOUR N. Evaluation of different alternatives for increasing the reaction furnace temperature of Claus SRU by chemical equilibrium calculations. Applied Thermal Engineering, 2008, 7.
12. SASSI M AND GUPTA A. Sulfur recovery from Acid Gas using the Claus Process and High Temperature Air Combustion ((HiTAC) Technology, American Journal of Environmental Sciences, 2008, 4(5), 502-511.
13. ABEDINI R, KOOLIVAND M AND GHASEMIAN S. Modeling and simulation of condensed sulfur in catalytic beds of Claus process: rapid estimation. Chemical Engineering Research Bulletin, 14, 2010, 110-114. Available online at: http://www.banglajol.info/index.php/CERB. DOI:10.3329/cerb.v14i2.5595.
14. NAZAROFF & ALVAREZ-COHEN, M. Flue-gas desulfurization ("Scrubbers"). 2014. Dartmouth. Thayer School of Engineering, Section 7 C.2 and Section 12.8.2. Recuperado el 28 de Enero de 2016, de https://engineering.dartmouth.edu
15. MARTÍNEZ ALVARADO, J. C., & MORALES MENDIVELSO, D. F. (2016). Torres empacadas. Universidad Industrial de Santander, Laboratorio de Procesos, Bucaramanga.
16. BR&E. ProMax® with TSWEET® Process Simulation Software. 2015. Disponible en https://www.bre.com/ProMax-Main.aspx
17. PETERS, M. and TIMMERHAUS, K. Plant Desing and Economics for Chemical Engineers. McGraw-Hill International Editions. Fourth Edition. 1991. Chemical and Petroleum Engineering Series.pp:183 Table 17 and, 210 - 211 Table 27.
18. MUSSATTI, D. C. Torres de limpieza húmeda para gas ácido. Manual de costos de control de contaminación del aire de la US-EPA. Capítulo 1. Sección 5: Controles para SO2 y para gas ácido. Sección 5.2: Controles post-combustión, 2002.
19. FARRAR, G. Nelson-Farrar Quarterly Costimating: Indexes for selected equipament items. (E. Perspective, Ed.) Oil and Journal Digital Megazine. 2015. Retrieved Diciembre 21, 2015, from http://www.ogj.com.
20. CUPET. (2013). Precios e insumos de reactivos para la organización del petróleo. La Habana: CUPET
This work is licensed under the Creative Commons Attribution-NonCommercial.