Sensitivity analysis of the PRO-ALGA model parameters for the growth simulation of Chlorella vulgaris

  • Orlando Gines Alfaro-Vives Centro de Investigaciones de Energía solar. Santiago de Cuba. Cuba
  • Siannah María Más-Diego Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba. Cuba
Keywords: elemental effects; microalgae cultivation; mathematical model.


The sensitivity analysis of a mathematical model allows to determine how the uncertainty of the model's outputs can be assigned to its input variables. In this work, the Morris or elemental effects method is used to perform the global sensitivity analysis to the PRO-ALGA model, to simulate the growth of the microalgae Chlorella vulgaris. The following steps were followed: specification of objectives, selection of the factors to be analyzed, selection of the probability density functions for each factor, generation of the input sample and evaluation of the model. The results allowed to identify that the input parameters maximum growth rate of microalgae (μa), mean saturation constant for pH (KpH), mean saturation constant for algae concentration (KCA), mass transfer coefficient for oxygen at 25 ºC during the day (KLAD) and mass transfer coefficient for oxygen at 25 ºC at night (KLAN) have the greatest influence on the output parameters of the model. The model is very sensitive to variations in KCA; the input parameters μa, KLAD and KLAN have non-linear or interaction effects on the output parameters of the model. The input parameters kpH and KCA have no significant effect on the output variables.


1. SOLIMENO, A.; SAMSÓ, R.; GARCÍA, J. Parameter sensitivity analysis of a mechanistic model to simulate microalgae growth. Algal Research. 2016, 15, 217-223. ISSN: 2211-9264.
2. SALTELLI, A., et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications. 2010, 181 (2), 259-270. ISSN: 0010-4655.
3. MAKOWSKI, D., et al. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering & System Safety. 2006, 91 (10), 1142-1147. ISSN: 0951-8320.
4. ALFARO, O. , et al. Producción de biofertilizantes a partir de la biomasa de microalgas. En: Proyecto Interno. Comunicación personal. Santiago de Cuba: Centro de Investigaciones de Energía Solar, 2019.
5. SOLIMENO, A.; PARKER, L.; LUNDQUIST, T. ; GARCÍA, J. Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Science of The Total Environment. 2017, 601-602, 646-657. ISSN: 0048-9697.
6. CAMPOLONGO, F.; SALTELLI, A. ; CARIBONI, J. From screening to quantitative sensitivity analysis. A unified approach. Computer Physics Communications. 2011, 182 (4), 978-988. ISSN: 0010-4655.
7. MORRIS, M. D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics. 1991, 33 (2), 161-174. ISSN: 0040-1706.
8. SIN, G. ; GERNAEY, K. V. "Improving the Morris method for sensitivity analysis by scaling the elementary effects." En: JEŻOWSKI, J. ; THULLIE, J. eds. Computer Aided Chemical Engineering. Elsevier, 2009, vol. 26, p. 925-930. ISBN 1570-7946.
How to Cite
Alfaro-Vives, O. G., & Más-Diego, S. M. (2022). Sensitivity analysis of the PRO-ALGA model parameters for the growth simulation of Chlorella vulgaris. Chemical Technology, 42(1), 40-55. Retrieved from

Most read articles by the same author(s)