Cogeneration from forest industry wastes gasification with the use of internal combustion engines

Keywords: biomass; gasification; electricity.

Abstract

Cuba has forestry industry residues gasification plant for at the "Gran Piedra Baconao Integral Forestry Company" in Santiago de Cuba, which includes a gasifier, internal combustion engine, and a wood dryer, that uses residual energy from the engine. In this work, an experimental theoretical evaluation of the cogeneration indices of the installation is carried out. The evaluation was carried out from mass and energy balances in the equipment that make up the installation from an experimental database resulting from 1194 hours of work of the, electrical energy generating for the sawmill and the national electrical network. The evaluation showed an electrical energy production efficiency of 11,07 %, a total cogeneration electrical efficiency of 41,94 %, and a net electrical energy production efficiency of 20,30 %. Other cogeneration indicators determined were net heat index of 4,93 kW/KW and renewable energy produced-fossil energy consumed ratio of 4,18.

References

1. LESME JAÉN Rene, OLIVA RUIZ Oscar. Coeficientes de residuos de la industria florestal. Revista Tecnologia Química, 2006. 26(3), pp:26-29 ISSN 2224 6185. 2. JESPER Ahrenfeldt, TOBIAS P. Thomsen, ULRIK Henriksen, LASSE R. Clausen.Biomass gasification cogeneration. A review of state of the art technology and near future perspectives. Applied Thermal Engineering, 2013, 50, pp: 14071417.ISSN: 1359-4311 3. PROENZA PÉREZ Nestor, BLANCO MACHIN Einara, TRAVIESO PEDROSO Daniel, ROBERTS Justo Jose, SANTANA ANTUNES Julio, LUZ SILVEIRA José. Biomass gasification for combined heat and power generation in the Cuban context: Energetic and economic analysis. Applied Thermal Engineering, 2015, (90), pp: 1-12. ISSN: 1359-4311 4. LESME JAÉN René, GARCÍA FAURE Luis, OLIVA RUIZ Luis, PAJARÍN RODRÍGUEZ Juan, REVILLA SUAREZ Dennis. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency. Revista Tecnología Química. (2016) 35(2). ISNN 2224 6185 5. MARTÍNEZ Juan Daniel, SILVA LORA E. E, VIERA ANDRADE Rubenildo, LESME JAÉN René. Experimental study on biomass gasification in a double air stage downdraft reactor. Biomass and Bioenergy, 2011, (35), pp: 3465-3480.ISSN: 0961-9534 6. CENGEL Ayunus, MICHAEL A. Borles. Thermodynamics: An Engineering Approach.McGraw-Hill.8va Edición. New York, 2015. ISBN 978-970-10-7286-8 7. HEYWOOD B John. InternalCombustionEngine Fundamentals. 2da Edición. Nueva York. Editorial:McGraw-Hill Education. ISBN: 9781260116106
8. SRIDHAR G., SRIDHAR, H. V., DASAPPA, S., PAUl, P. J., RAJAN, N. K. S., MUKUNDA UK, H. S. “Developmentof Producer GasEngines”. Proc. IMechE, Part D: Journal of AutomobileEngineering, 2005, 219, pp: 423-438.ISSN: 2455-3360 9. GRAVE DE PERALTA CAMPOS, Leonel. Evaluación de los indicadores de desempeño y la eficiencia energética de un sistema de cogeneración perteneciente a la Empresa Forestal Gran Piedra-Baconao. Tesis en opción al título de máster en Eficiencia Energética. Universidad de Oriente, Santiago de Cuba, Cuba, 2017. 10. ROJAS VARGAS, Armando. Balance de energía en un horno de secar madera. Revista Tecnología Química. (2016), 36(1), pp: 20-35. ISBN 0041-8420 11. TIPPAYAWONG N, TANTAKITTI C, THAVORNUN S, PEERAWANITKUL V. Energy conservation in drying of peeled longan by forced convection and hot air recirculation. Biosystems engineering, 2009, (104), pp: 199 – 204. ISSN: 15375110 12. BORROTO, Anibal; GONZÁLEZ, Felix, DE ARMAS, Marcos. Temas avanzados de cogeneración. Universidad de Cienfuegos, Cuba, 2007.ISBN 978959-257-181-5. 13. BOSCHIERO DO ESPIRITO SANTO Denilson, GALLO Waldyr Luiz Ribeiro. Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems. Energy 2017, (120) pp: 785-795.ISSN: 0360-5442 14. JE-LUENG Shie, CHING-YUAN Chang, CI-SYUAN Chen, DAI-GEE Shaw, YIHUNG Chen, WEN-HUI Kuan, HSIAO-KANMaf. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Bioresource Technology, 2011, (102) pp: 6735–6741.ISSN: 0960-8524 15. VERMA Aman, KUMAR Amit. Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, 2015, (147), pp: 556–568. 16. SANG JUN Yoon, YUNG-IL Son, YONG-KU Kima, JAE-GOO Lee. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 2012, (42) pp:163-167.ISSN: 0960-1481 17. RAMAN P, N.K. RAM N, GUPTA R. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis. Energy, 2013, (54), pp: 302-314.ISSN: 0360-5442 18. SHASHIKANTHA, B, KHAIRNAR P, Kamat, PARIKH P. Development and Performance Analysis of a 15 kWe Producer Gas Operated SI Engine.Recent Advances in Biomass Gasification and Combustion. Proceedings of Fourth National Meet on Biomass Gasification and Combustion, India, Journal of Automobile Engineering, 2005, 219 (3) pp: 423-438.ISSN: 2455-3360 19. BHATTACHATYA, S. C., HLA, S. S., PHAM, H. L.A Study on a Multi- Stage Hybrid Gasifier-Engine System.Biomass and Bioenergy, 2001, (21), pp:445460.ISSN: 0961-9534 20. VIERA ANDRADE R, LESME JAÉNR, SILVA LORA E. Análise da operação de um gaseificador de leito fixo com duplo estágio acoplado um motor de combustão interna de ignição por centelha para conversão de biomassa em energia elétrica.VI Congresso Nacional de Engenharia Mecânica.VI National Congressof Mechanical Engineering 18 a 21 de agosto de 2010 – Campina Grande – Paraíba – Brasil. CONEM 2010 ISSN2178-180X
Published
2022-08-31
How to Cite
Lesme-Jaén, R., Martínez-González, A., Silva-Lora, E. E., & Rodríguez-Ortiz, L. (2022). Cogeneration from forest industry wastes gasification with the use of internal combustion engines. Chemical Technology, 42(3), 519-540. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5277
Section
Artículos