Caracterización de la biomasa vegetal aserrín de pino

  • Angel Rafael Pérez-Vinent Facultad de Ingeniería Química y Agronomía. Departamento de Ingeniería Química. Universidad de Oriente. Santiago de Cuba, Cuba https://orcid.org/0000-0001-7028-8706
  • Nurian Serret-Guasch Facultad de Ingeniería Química y Agronomía. Departamento de Ingeniería Química. Universidad de Oriente. Santiago de Cuba, Cuba https://orcid.org/0000-0003-0610-9288
  • Margarita Penedo-Medina Facultad de Ingeniería Química y Agronomía. Departamento de Ingeniería Química. Universidad de Oriente. Santiago de Cuba, Cuba https://orcid.org/0000-0003-1423-0109
Palabras clave: aserrín de pino; diámetro medio; análisis próximo; densidad.

Resumen

El análisis de tamizado, análisis próximo, densidad real y aparente de aserrín de pino fueron estudiados como parte de los estudios de aplicación de esta biomasa vegetal, en procesos de pirolisis y gasificación. El análisis de tamizado fue aplicado para determinar el diámetro promedio de partículas según diferentes definiciones; se ajustaron los modelos de Gaudin-Andreiev y de Rozin-Rammler para obtener el modelo matemático de distribución de tamaño. Se determinó la densidad real y aparente de la biomasa y se realizó el análisis próximo por la norma internacional GOST 2851-45. Como resultado se obtuvo que el diámetro de Sauter fue 0,37mm. El modelo con mejor ajuste para los datos de distribución de tamaño fue el de Rozin-Rammler. La densidad real, aparente y la porosidad resultaron 468,05kg/m3, 177,11kg/m3 y 0,75 respectivamente. El análisis próximo mostró que el contenido de humedad, de materia volátil, carbono fijo y de ceniza fue de 7,65 %, 83,54 %, 16%,10 % y 0,37 % respectivamente. Las propiedades del aserrín de pino muestran su potencialidad como materia prima para generación de combustibles o portadores energéticos, aplicando procesos de pirolisis y gasificación. 

Citas

1. BASTIDAS ITURRALDES, D.X, N.A. MIÑO PUENTE. Caracterización comparativa del proceso del proceso de pirolisis de dos biomasas. Trabajo de titulación. M, Rosero Espín (dir.). Universidad de Quito, 2019. 2. GOMEZ, E. A, LA, RÍOS, J.D. PEÑA. Efecto del Pretratamiento de Biomasa Maderera en el Rendimiento a Etanol. Scielo. Dpto. de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia. 2013, 24(5). ISNN 0718-0764. 3. CAI J., Y. HE, X. YU, S.W. BANKS, Y. YANG, X. ZHANG, Y. YU, R. LIU, A.V. BRIDGWATER. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renewable and Sustainable Energy Reviews .2017, 76, pp.309-322.ISSN 1364-0321. 4. RÍOS, P.D.A., et al., Variação radial e longitudinal da densidade básica da madeira de Pinus patula. Pesquisa Florestal Brasileira, 2018. 38. Disponíble en: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1016. 5. SERRET.GUASCH, N. Caracterización de aserrín de diferentes maderas. Tecnología Química: Universidad de Oriente, 2016, 36 (3), pp.468-479.ISSN 2224-6185. 6. XUE, Q., R.O. FOX, Computational Modeling of Biomass Thermochemical Conversion in Fluidized Beds: Particle Density Variation and Size Distribution. Industrial & Engineering Chemistry Research. 2015, 54(16), pp, 4084–4094. ISSN 1520-5045 (Online)
7. LIN F, WATERS CL, MALLINSON RG, LOBBAN LL, BARTLEY LE. Relationships between biomass composition and liquid products formed via pyrolysis. Frontiers in Energy Research. 2015;3(45). Disponible en: https://doi.org/10.3389/fenrg.2015.00045 8. ARNOULT S, BRANCOURT-HULMEL M. A Review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. BioEnergy Research. 2015, 54(8) pp.502526. Disponible en:https://doi.org/10.1007/s12155-014-9524-7 9. ISIKGOR FH, BECER CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry. 2015; 6, pp.4497-4559. ISSN 1759-9954 10. ROSABAL VEGA, J., GARCELL-PUYANS L. Hidrodinámica y Separaciones Mecánicas T1. Primera Edición. La Habana: Félix Varela. 2006. ISBN 959-258983-6 11. SALAZAR RABAGO, J.J., ROBERTO RAMOS Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research, 2017, 27(1), pp.32-40. ISNN 2468-2039 12. TRINDADE, J.D.S., Alain Collao. Produtividade do milheto em três densidades de semeadura e duas alturas de corte. Zootecnia. Ciencia Animal Brasileira, 2017,18. ISSN 1809-6891. 13. VASSILEV SV, BAXTER D, ANDERSEN LK, VASSILEVA CG. An overview of the composition and application of biomass. Part 1. Phase–mineral and chemical composition and classification. Fuel. 2013; 105, pp.40-76. ISSN 0123-3769. 14. NUNES LJR, MATIAS JCO, CATALÃO JPS. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews. 2016; 53, pp.235-42. ISSN 1364-0321. 15. SINGH CHOUHAN A.P., K. SARMA. Critical analysis of process parameters for bio-oil production via pyrolysis of biomass: A review. Recent Patents on Engineering. 2013, 7(2), pp. 98-114. ISNN 1872-2121.
16. TSAI, W , EE , M.K “Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor”. Journal of Analytical and Applied Pyrolysis, 2006, 76(1), pp. 230-237.ISSN 0165-2370. 17. WEI, L, XU, SHAOPING “Characteristics of fast pyrolysis of biomass in a free fall reactor”. Fuel Processing Technology, 2006, 87(10), pp. 863-871. ISSN 18737153. 18. Fonseca, F et al. Biomass briguetting and its perpectives in Brazil. Biomass and Bioenergy. 2011, , 35(1), pp.236-242.ISSN 0961-9534. 19. VASSILEV S.V., D. BAXTER, L.K. ANDERSEN, Ch.G. VASSILEVA. An overview of the chemical composition of biomass ash. Fuel-on line .2010, 89 (5), pp.913–933. ISSN.1873-7153. 20. ESCALONA, F. J. A. S. R., and P.A. BEATON. Pirolisis autotérmica en lecho fluidizado de aserrín de algarrobo. Tecnología Química.Universidad.2010, 30 (2), pp.95-101. ISSN.0041-8420. 21. PINO ESCOBAR, H.A. La adición de aserrín y poliestireno en la elaboración de bloques de adobe para vivienda unifamiliares y su efecto en la variación de temperatura y acondicionamiento acústico en el Cantón Ambato, provincia de Tungurahua. Tesis de fin de curso.MG. G. Nuñez. (dir.) Universidad Técnica de Ambato-Ecuador. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Civil ,2019. Publicación interna. 22. DEULOFEUTH CARRERA, C, D. Incidencia de la adición del aserrín fino en las propiedades físicas de los ladrillos de arcilla. Tesis de fin de curso.B.F. Modesto (dir.) Universidad de Cartagena, 2020. 23. CREMASCO, M. A. Operações Unitárias em Sistemas Particulados e Fluidomecânicos. Editora Edgard Blücher Ltda., São Paulo, 2012. ISBN 978-85212-0856-3 24. TANQUILUT M.R., J.C. ELAURIA, R.M. C. AMONGO, D.C. SUMINISTRADO, K.F. YAPTENCO, M.M. ELAURIA. Biomass Characterization of Pigeon Pea (Cajanus cajan) Wood for Thermochemical Conversion.Philippine Journal of Agricultural and Biosystems Engineering, 2019, 15(1), pp.39-52. ISSN 0119-7312.
25. GAYOSSO-RODRÍGUEZ S., L. BORGES-GÓMEZ, E. VILLANUEVA-COUOH, M.A. ESTRADA-BOTELLO, R. GARRUÑA. Caracterización física y química de materiales orgánicos para sustratos agrícolas. Agrociencia.2018, 52(4), pp.639652. ISSN 1405-3195.
Publicado
2022-08-31
Cómo citar
Pérez-Vinent, A. R., Serret-Guasch, N., & Penedo-Medina, M. (2022). Caracterización de la biomasa vegetal aserrín de pino. Tecnologí­a Química, 42(3), 556-573. Recuperado a partir de https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5279
Sección
Artículos