Graphene: production, characterization and applications

Keywords: graphene; nanomaterial; carbon; synthesis; properties; applications.

Abstract

Among the carbon-based compounds is graphene. This is an exceptional material, both from the point of view of fundamental physics research and from the point of view of its practical applications. Graphene occupies a prominent place in science, and the different research carried out is opening up new avenues for the development of functional materials. In this work, the structure of this interesting compound is analyzed. In addition, the chemical, electrical, mechanical and thermal properties are described. On the other hand, the methods used for its synthesis and the techniques used for its characterization are analyzed. Finally, its importance in the creation of new materials with improved properties is discussed, as well as its various applications in different areas of science and technology. These properties also make graphene the ideal material to be applied not only in the field of electronics, but also in medicine, pharmaceuticals, energy, among others. These properties will benefit greatly from this novel bidimensional nanomaterial.

References

1. MADURANI, K.A.; et al. Progress in graphene synthesis and its application: History, challenge and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 2020,9(9), pp. 093013. ISSN: 2162-8777. DOI: https://doi.org/10.1149/2162-8777/abbb6f
2. WINNE, J.M.; LEIBLER, L.; and DU PREZ, F.E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry, 2019,10(45), pp. 6091-6108. ISSN: 1759-9962. DOI: https://doi.org/10.1039/C9PY01260E
3. DUNLOP, M.J.; and BISSESSUR, R. Nanocomposites based on graphene analogous materials and conducting polymers: a review. Journal of Materials Science, 2020, 55(16), pp. 6721-6753. ISSN: 0022-2461. DOI: https://doi.org/10.1007/s10853-020-04479-9 4. ROSENKRANZ, A.; LIU, Y.; YANG, L.; and CHEN, L. 2D nano-materials beyond graphene: from synthesis to tribological studies. Applied Nanoscience, 2020, 10(9), pp. 3353-3388. ISSN: 2190-5517. DOI: https://doi.org/10.1007/s13204-020-01466-z
5. SUMDANI, M.G.; ISLAM, M.R.; YAHAYA, A.N.A.; and SAFIE, S.I. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23(11), pp.1-35. ISSN: 1572-896X. DOI: https://doi.org/10.1007/s11051-021-05371-6
6. TIWARI, S.K.; SAHOO, S.; WANG, N.; and HUCZKO, A. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 2020, 5(1), pp. 10-29. ISSN: 2468-2179. DOI: https://doi.org/10.1016/j.jsamd.2020.01.006
7. SUN, Z.; and HU, Y.H. Ultrafast, low‐cost, and mass production of high‐quality graphene. Angewandte Chemie International Edition, 2020, 59(24), pp. 9232-9234. ISSN: 1521-3773. DOI: https://doi.org/10.1002/anie.20202256
8. YANG, G.; LI, L.; LEE, W.B.; and NG, M.C. Structure of graphene and its disorders: a review. Science and technology of advanced materials, 2018, 19(1), pp. 613-648. ISSN: 1878-5514. DOI: https://doi.org/10.1080/14686996.2018.1494493 9. KAZEMZADEH, A.; et al. Preparation of graphene nanolayers through surfactant-assisted pure shear milling method. Journal of Composites and Compounds, 2019, 1(1), pp. 22-26. ISSN: 2716-9650. DOI: https://doi.org/10.29252/jcc.1.1.4 10. COROŞ, M.; et al. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Frontiers of Materials Science, 2019, 13(1), pp. 23-32. ISSN: 2095-0268. DOI: https://doi.org/10.1007/s11706-019-0452-5 11. CATALDI, P.; ATHANASSIOU, A.; and BAYER, I.S. Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Appl Sci, 2018, 8(9), pp. 1438. ISSN: 2076-3417. DOI: https://doi.org/10.3390/app8091438
12. SOLÍS-FERNÁNDEZ, P.; and AGO B.M.H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev, 2017, 46, pp. 4572–4613. ISSN: 1460-4744. DOI: https://doi.org/10.1039/C7SC00160F
13. ZHAO, Z.; et al. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. Carbon, 2020, 170, pp. 302-326. ISSN: 0008-6223. DOI: https://doi.org/10.1016/j.carbon.2020.08.040 14. QIAO, Q.; LIU, C.; GAO, W.; and HUANG, L. Graphene oxide model with desirable structural and chemical properties. Carbon, 2019, 143, pp. 566-577. ISSN: 0008-6223. DOI: https://doi.org/10.1016/j.carbon.2018.11.063
15. HOUTSMA, R.K.; RIE, J.; and STÖHR, M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews, 2021,50(11), pp. 6541-6568. ISSN: 1460-4744. DOI: https://doi.org/10.1039/D0CS01541E 16. ZHENG, S.; CAO, Q.; LIU, S.; and PENG, Q. Atomic structure and mechanical properties of twisted bilayer graphene. Journal of Composites Science, 2018, 3(1), pp. 2. ISSN: 0266-3538. DOI: https://doi.org/10.3390/jcs3010002 17. Young, R.J.; et al. The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 2018,154, pp. 110-116. ISSN: 0266-3538. DOI: https://doi.org/10.1016/j.compscitech.2017.11.007 18 WANG, J.; et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chemical Engineering Journal, 2019, 370, pp. 831-854. ISSN: 1385-8947. DOI: https://doi.org/10.1016/j.cej.2019.03.229
19. REN, S.; RONG, P.; and YU, Q. Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International, 2018, 44(11), pp. 11940-11955. ISSN: 0272-8842. DOI: https://doi.org/10.1016/j.ceramint.2018.04.089 20HUANG, P.; et al. Graphene film for thermal management: A review. Nano Materials Science, 2021, 3(1), pp.1-16. ISSN: 2589-9651. DOI: https://doi.org/10.1016/j.nanoms.2020.09.001 21. SANG, M.; SHIN, J.; KIM, K.; and YU, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 2019, 9(3), pp. 374. ISSN: 2079-4991. DOI: https://doi.org/10.3390/nano9030374 22. LIN, L.; PENG, H.; and LIU, Z. Synthesis challenges for graphene industry. Nature materials, 2019, 18(6), pp. 520-524. ISSN: 1476-4660. DOI: https://doi.org/10.1038/s41563-019-0341-4
23. WU, Y.; WANG, S.; and KOMVOPOULOS, K. A review of graphene synthesis by indirect and direct deposition methods. Journal of Materials Research, 2020, 35(1), pp. 76-89. ISSN: 2044-5326. DOI: https://doi.org/10.1557/jmr.2019.377
24. PASHOVA, K.; et al., Graphene synthesis by microwave plasma chemical vapor deposition: analysis of the emission spectra and modeling. Plasma Sources Science and Technology, 2019, 28(4), pp. 045001. ISSN: 1361-6595. DOI: https://doi.org/10.1088/1361-6595/ab0b33
25. XIN, H.; and LI, W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018, 5(3), pp. 031105. ISSN: 1931-9401. DOI: https://doi.org/10.1063/1.5035295 26. DE FAZIO, D.; et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS nano, 2019, 13(8), pp. 8926-8935. ISSN: 1936-086X. DOI: https://doi.org/10.1021/acsnano.9b02621 27. SANTANGELO, M.F.; et al. Real-time sensing of lead with epitaxial graphene-integrated microfluidic devices. Sensors and Actuators B: Chemical, 2019, 288, pp. 425-431.ISSN: 0925-4005. DOI: https://doi.org/10.1016/j.snb.2019.03.021 28. ADETAYO, A.; and RUNSEWE, D. Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, 2019, 9(2), pp. 207. ISSN: 1530-793X. DOI: https://doi.org/10.4236/ojcm.2019.92012 29. TARCAN, R.; et al. Reduced graphene oxide today. Journal of Materials Chemistry C, 2020, 8(4), pp. 1198-1224. ISSN: 20507534. DOI: https://doi.org/10.1039/C9TC04916A
30. RANJAN, P.; et al. A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Scientific Reports, 2018, 8(1), pp. 12007. ISSN: 2045-2322. DOI: https://doi.org/10.1038/s41598-018-30613-4
31. LIU, F.; et al. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy, 2019, 1(2), pp. 173-199. ISSN: 2637-9368. DOI: https://doi.org/10.1002/cey2.14 32. SINCLAIR, R.C.; SUTER, J.L.; and COVENEY, P.V. Micromechanical exfoliation of graphene on the atomistic scale. Physical Chemistry Chemical Physics, 2019, 21(10), pp. 5716-5722. ISSN: 1463-9084. DOI: https://doi.org/10.1039/C8CP07796G 33. XU, Y.; et al. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials, 2018, 8(11), pp. 942. ISSN: 2079-4991. DOI: https://doi.org/10.3390/nano8110942
34. AGUDOSI, E.S.; et al. A Review of the Graphene Synthesis Routes and its Applications in Electrochemical Energy Storage. Critical Reviews in Solid State and Materials Sciences, 2020, 45(5), pp. 339-377. ISSN: 10408436. DOI: https://doi.org/10.1080/10408436.2019.1632793
35. VINYAS, M.; et al. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization. Materials Research Express, 2019, 6(9), pp. 092002. ISSN: 2053-1591. DOI: https://doi.org/10.1016/j.cossms.2018.09.003 36. SCHÜLLI, T.U.; and LEAKE, S.J. X-ray nanobeam diffraction imaging of materials. Current Opinion in Solid State and Materials Science, 2018, 22(5), pp.188-201. ISSN: 1359-0286. DOI: https://doi.org/10.1016/j.cossms.2018.09.003 37. FRANKEN, L.E.; GRÜNEWALD, K.; BOEKEMA, E.J.; and STUART, M.C. A Technical Introduction to Transmission Electron Microscopy for Soft‐Matter: Imaging, Possibilities, Choices, and Technical Developments. Small, 2020, 16(14), pp.1906198. ISSN: 1613-6829. DOI: https://doi.org/10.1002/smll.201906198 38. LI, R.; et al. Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir, 2018, 34(5), pp. 1827-1833. ISSN: 1520-5827. DOI: https://doi.org/10.1021/acs.langmuir.7b03117
39. WANG, D.; and RUSSELL, T.P. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules, 2018, 51(1), pp. 3-24. ISSN: 1520-5835. DOI: https://doi.org/10.1021/acs.macromol.7b01459
40. WU, J.B.; et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society reviews, 2018, 47(5), pp. 1822-1873. ISSN: 1460-4744. DOI: https://doi.org/10.1039/C6CS00915H 41.WEI, Z.; BECWAR, S.M.; CHMELKA, B.F.; and SAUTET, P. Atomic environments in N-containing graphitic carbon probed by first-principles calculations and solid-state nuclear magnetic resonance. The Journal of Physical Chemistry C, 2021, 125(16), pp. 8779-8787. ISSN: 1932-7455. DOI: https://doi.org/10.1021/acs.jpcc.1c00511 42. MAZUR, A.S.; VOVK, M.A.; and TOLSTOY, P.M. Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(3), 202-213. ISSN: 1536-4046. DOI: https://doi.org/10.1080/1536383X.2019.1686622
43. ZHU, Y.; et al. Mass production and industrial applications of graphene materials. National Science Review, 2018, 5(1), pp. 90-101. ISSN: 2053-714X. DOI: https://doi.org/10.1093/nsr/nwx055
44. SUSHMITA, M.A.; et al. Mechanistic Insight into the Nature of Dopants in Graphene Derivatives Influencing Electromagnetic Interference Shielding Properties in Hybrid Polymer Nanocomposites. J Phys Chem C, 2019, 123, pp. 2579−2590. ISSN: 1932-7455. DOI: https://doi.org/10.1021/acs.jpcc.8b10999
45. MÜLLER, K.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 2017, 7(4), pp. 74. ISSN: 2079-4991. DOI: https://doi.org/10.3390/nano7040074
46. ZHANG, D.Y.; et al. Incorporation of different proportions of polytetrafluoroethylene and graphene into polyethersulfone matrix as efficient anticorrosive coatings. J Appl Polym Sci, 2019, 136(37), pp. 47942. ISSN: 1097-4628. DOI: https://doi.org/10.1002/app.47942 47. TIAN, W.; LIU, X.; and YU, W. Research progress of gas sensor based on graphene and its derivatives: A review. Applied Sciences, 2018, 8(7), pp.1118. ISSN: 2076-3417. DOI: https://doi.org/10.3390/app8071118 48. DEMON, S.Z.N.; et al. Graphene-based materials in gas sensor applications: A review. Sens Mater, 2020, 32(2), pp. 759-777. ISSN: 2435-0869. DOI: https://doi.org/10.18494/SAM.2020.2492
49. TJONG, S.C. Polymer Composites with Graphene Nanofillers: Electrical Properties and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14(2), pp. 1154-1168. ISSN: 1533-4899. DOI: https://doi.org/10.1166/jnn.2014.9117 50LU, Y.; et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook. Int J Electrochem Sci, 2019, 14, 5961-5971. ISSN: 1452-3981. DOI: https://doi.org/1020964/2019.07.50
51. SMITH, A.T.; et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1(1), pp. 31-47. ISSN: 2589-9651. DOI: https://doi.org/10.1016/j.nanoms.2019.02.004 52. MAO, J.; et al. Graphene aerogels for efficient energy storage and conversion. Energy & Environmental Science, 2018, 11(4), pp.772-799. ISSN: 1754-5706. DOI: https://doi.org/10.1039/C7EE03031B
53. CHANG, L.; and HU, Y.H. Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors. Matter, 2019,1(3), pp. 596-620. ISSN: 2590-2385. DOI: https://doi.org/10.1016/j.matt.2019.06.016
54. ZHAO, X.; et al. A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Conversion and Management, 2019,184, pp. 581-599. ISSN: 0196-8904. DOI: https://doi.org/10.1016/j.enconman.2019.01.092
55. TEO, A.J.T.; et al. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomaterials Science & Engineering, 2016, 2(4), pp. 454-472. ISSN: 2373-9878. DOI: https://doi.org/10.1021/acsbiomaterials.5b00429
56. ATURALIYA R.; et al. Expanded Polytetrafluoroethylene/Graphite Composites for Easy Water/Oil Separation,. ACS Appl Mater Interfaces, 2020. 12, pp. 38241−38248. ISSN: 1944-8252. DOI: https://doi.org/10.1021/acsami.0c11583
57. SILVA, M.; ALVES, N.M.; and PAIVA, M.C. Graphene-polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies, 2018, 29(2), pp. 687-700. ISSN: 1099-1581. DOI: https://doi.org/10.1002/pat.4164
58. SREEHARSHA, N.; et al. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. International Journal of Nanomedicine, 2019, 14, pp. 7419-7429. ISSN: 1178-2013. DOI: https://doi.org/10.2147/IJN.S211224
59. XIA, M.Y.; et al. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 2019, 307, pp.16-31. ISSN: 1873-4995. DOI: https://doi.org/10.1016/j.jconrel.2019.06.011
60. MA, Y.; et al. Robust and Antibacterial Polymer/Mechanically Exfoliated Graphene Nanocomposite Fibers for Biomedical Applications. ACS Applied Materials & Interfaces, 2018, 10(3), pp. 3002-3010. ISSN: 1944-8252. DOI: https://doi.org/10.1021/acsami.7b17835
61. WANG, W.R.; et al. Review-Biosensing and Biomedical Applications of Graphene: A Review of Current Progress and Future Prospect. Journal of the Electrochemical Society, 2019, 166(6), pp. 505-520. ISSN: 1945-7111. DOI: https://doi.org/10.1149/2.1231906jes
62. KUMAR, R.; et al. Graphene as biomedical sensing element: State of art review and potential engineering applications. Composites Part B: Engineering, 2018,134, pp.193-206. ISSN: 1359-8368. DOI: https://doi.org/10.1016/j.compositesb.2017.09.049
Published
2023-01-05
How to Cite
García-Bello, J. L., Batista-Luna, T. T., Villar-Goris, N. A., Camué-Ciria, H. M., & Cid-Pérez, D. (2023). Graphene: production, characterization and applications. Chemical Technology, 43(1), 59-80. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5307
Section
Artículos