Graphene: production, characterization and applications

Keywords: graphene; nanomaterial; carbon; synthesis; properties; applications.


Among the carbon-based compounds is graphene. This is an exceptional material, both from the point of view of fundamental physics research and from the point of view of its practical applications. Graphene occupies a prominent place in science, and the different research carried out is opening up new avenues for the development of functional materials. In this work, the structure of this interesting compound is analyzed. In addition, the chemical, electrical, mechanical and thermal properties are described. On the other hand, the methods used for its synthesis and the techniques used for its characterization are analyzed. Finally, its importance in the creation of new materials with improved properties is discussed, as well as its various applications in different areas of science and technology. These properties also make graphene the ideal material to be applied not only in the field of electronics, but also in medicine, pharmaceuticals, energy, among others. These properties will benefit greatly from this novel bidimensional nanomaterial.


1. MADURANI, K.A.; et al. Progress in graphene synthesis and its application: History, challenge and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 2020,9(9), pp. 093013. ISSN: 2162-8777. DOI:
2. WINNE, J.M.; LEIBLER, L.; and DU PREZ, F.E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polymer Chemistry, 2019,10(45), pp. 6091-6108. ISSN: 1759-9962. DOI:
3. DUNLOP, M.J.; and BISSESSUR, R. Nanocomposites based on graphene analogous materials and conducting polymers: a review. Journal of Materials Science, 2020, 55(16), pp. 6721-6753. ISSN: 0022-2461. DOI: 4. ROSENKRANZ, A.; LIU, Y.; YANG, L.; and CHEN, L. 2D nano-materials beyond graphene: from synthesis to tribological studies. Applied Nanoscience, 2020, 10(9), pp. 3353-3388. ISSN: 2190-5517. DOI:
5. SUMDANI, M.G.; ISLAM, M.R.; YAHAYA, A.N.A.; and SAFIE, S.I. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23(11), pp.1-35. ISSN: 1572-896X. DOI:
6. TIWARI, S.K.; SAHOO, S.; WANG, N.; and HUCZKO, A. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 2020, 5(1), pp. 10-29. ISSN: 2468-2179. DOI:
7. SUN, Z.; and HU, Y.H. Ultrafast, low‐cost, and mass production of high‐quality graphene. Angewandte Chemie International Edition, 2020, 59(24), pp. 9232-9234. ISSN: 1521-3773. DOI:
8. YANG, G.; LI, L.; LEE, W.B.; and NG, M.C. Structure of graphene and its disorders: a review. Science and technology of advanced materials, 2018, 19(1), pp. 613-648. ISSN: 1878-5514. DOI: 9. KAZEMZADEH, A.; et al. Preparation of graphene nanolayers through surfactant-assisted pure shear milling method. Journal of Composites and Compounds, 2019, 1(1), pp. 22-26. ISSN: 2716-9650. DOI: 10. COROŞ, M.; et al. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Frontiers of Materials Science, 2019, 13(1), pp. 23-32. ISSN: 2095-0268. DOI: 11. CATALDI, P.; ATHANASSIOU, A.; and BAYER, I.S. Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Appl Sci, 2018, 8(9), pp. 1438. ISSN: 2076-3417. DOI:
12. SOLÍS-FERNÁNDEZ, P.; and AGO B.M.H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev, 2017, 46, pp. 4572–4613. ISSN: 1460-4744. DOI:
13. ZHAO, Z.; et al. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. Carbon, 2020, 170, pp. 302-326. ISSN: 0008-6223. DOI: 14. QIAO, Q.; LIU, C.; GAO, W.; and HUANG, L. Graphene oxide model with desirable structural and chemical properties. Carbon, 2019, 143, pp. 566-577. ISSN: 0008-6223. DOI:
15. HOUTSMA, R.K.; RIE, J.; and STÖHR, M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews, 2021,50(11), pp. 6541-6568. ISSN: 1460-4744. DOI: 16. ZHENG, S.; CAO, Q.; LIU, S.; and PENG, Q. Atomic structure and mechanical properties of twisted bilayer graphene. Journal of Composites Science, 2018, 3(1), pp. 2. ISSN: 0266-3538. DOI: 17. Young, R.J.; et al. The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 2018,154, pp. 110-116. ISSN: 0266-3538. DOI: 18 WANG, J.; et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chemical Engineering Journal, 2019, 370, pp. 831-854. ISSN: 1385-8947. DOI:
19. REN, S.; RONG, P.; and YU, Q. Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International, 2018, 44(11), pp. 11940-11955. ISSN: 0272-8842. DOI: 20HUANG, P.; et al. Graphene film for thermal management: A review. Nano Materials Science, 2021, 3(1), pp.1-16. ISSN: 2589-9651. DOI: 21. SANG, M.; SHIN, J.; KIM, K.; and YU, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 2019, 9(3), pp. 374. ISSN: 2079-4991. DOI: 22. LIN, L.; PENG, H.; and LIU, Z. Synthesis challenges for graphene industry. Nature materials, 2019, 18(6), pp. 520-524. ISSN: 1476-4660. DOI:
23. WU, Y.; WANG, S.; and KOMVOPOULOS, K. A review of graphene synthesis by indirect and direct deposition methods. Journal of Materials Research, 2020, 35(1), pp. 76-89. ISSN: 2044-5326. DOI:
24. PASHOVA, K.; et al., Graphene synthesis by microwave plasma chemical vapor deposition: analysis of the emission spectra and modeling. Plasma Sources Science and Technology, 2019, 28(4), pp. 045001. ISSN: 1361-6595. DOI:
25. XIN, H.; and LI, W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018, 5(3), pp. 031105. ISSN: 1931-9401. DOI: 26. DE FAZIO, D.; et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS nano, 2019, 13(8), pp. 8926-8935. ISSN: 1936-086X. DOI: 27. SANTANGELO, M.F.; et al. Real-time sensing of lead with epitaxial graphene-integrated microfluidic devices. Sensors and Actuators B: Chemical, 2019, 288, pp. 425-431.ISSN: 0925-4005. DOI: 28. ADETAYO, A.; and RUNSEWE, D. Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, 2019, 9(2), pp. 207. ISSN: 1530-793X. DOI: 29. TARCAN, R.; et al. Reduced graphene oxide today. Journal of Materials Chemistry C, 2020, 8(4), pp. 1198-1224. ISSN: 20507534. DOI:
30. RANJAN, P.; et al. A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Scientific Reports, 2018, 8(1), pp. 12007. ISSN: 2045-2322. DOI:
31. LIU, F.; et al. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy, 2019, 1(2), pp. 173-199. ISSN: 2637-9368. DOI: 32. SINCLAIR, R.C.; SUTER, J.L.; and COVENEY, P.V. Micromechanical exfoliation of graphene on the atomistic scale. Physical Chemistry Chemical Physics, 2019, 21(10), pp. 5716-5722. ISSN: 1463-9084. DOI: 33. XU, Y.; et al. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials, 2018, 8(11), pp. 942. ISSN: 2079-4991. DOI:
34. AGUDOSI, E.S.; et al. A Review of the Graphene Synthesis Routes and its Applications in Electrochemical Energy Storage. Critical Reviews in Solid State and Materials Sciences, 2020, 45(5), pp. 339-377. ISSN: 10408436. DOI:
35. VINYAS, M.; et al. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization. Materials Research Express, 2019, 6(9), pp. 092002. ISSN: 2053-1591. DOI: 36. SCHÜLLI, T.U.; and LEAKE, S.J. X-ray nanobeam diffraction imaging of materials. Current Opinion in Solid State and Materials Science, 2018, 22(5), pp.188-201. ISSN: 1359-0286. DOI: 37. FRANKEN, L.E.; GRÜNEWALD, K.; BOEKEMA, E.J.; and STUART, M.C. A Technical Introduction to Transmission Electron Microscopy for Soft‐Matter: Imaging, Possibilities, Choices, and Technical Developments. Small, 2020, 16(14), pp.1906198. ISSN: 1613-6829. DOI: 38. LI, R.; et al. Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir, 2018, 34(5), pp. 1827-1833. ISSN: 1520-5827. DOI:
39. WANG, D.; and RUSSELL, T.P. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules, 2018, 51(1), pp. 3-24. ISSN: 1520-5835. DOI:
40. WU, J.B.; et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society reviews, 2018, 47(5), pp. 1822-1873. ISSN: 1460-4744. DOI: 41.WEI, Z.; BECWAR, S.M.; CHMELKA, B.F.; and SAUTET, P. Atomic environments in N-containing graphitic carbon probed by first-principles calculations and solid-state nuclear magnetic resonance. The Journal of Physical Chemistry C, 2021, 125(16), pp. 8779-8787. ISSN: 1932-7455. DOI: 42. MAZUR, A.S.; VOVK, M.A.; and TOLSTOY, P.M. Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(3), 202-213. ISSN: 1536-4046. DOI:
43. ZHU, Y.; et al. Mass production and industrial applications of graphene materials. National Science Review, 2018, 5(1), pp. 90-101. ISSN: 2053-714X. DOI:
44. SUSHMITA, M.A.; et al. Mechanistic Insight into the Nature of Dopants in Graphene Derivatives Influencing Electromagnetic Interference Shielding Properties in Hybrid Polymer Nanocomposites. J Phys Chem C, 2019, 123, pp. 2579−2590. ISSN: 1932-7455. DOI:
45. MÜLLER, K.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 2017, 7(4), pp. 74. ISSN: 2079-4991. DOI:
46. ZHANG, D.Y.; et al. Incorporation of different proportions of polytetrafluoroethylene and graphene into polyethersulfone matrix as efficient anticorrosive coatings. J Appl Polym Sci, 2019, 136(37), pp. 47942. ISSN: 1097-4628. DOI: 47. TIAN, W.; LIU, X.; and YU, W. Research progress of gas sensor based on graphene and its derivatives: A review. Applied Sciences, 2018, 8(7), pp.1118. ISSN: 2076-3417. DOI: 48. DEMON, S.Z.N.; et al. Graphene-based materials in gas sensor applications: A review. Sens Mater, 2020, 32(2), pp. 759-777. ISSN: 2435-0869. DOI:
49. TJONG, S.C. Polymer Composites with Graphene Nanofillers: Electrical Properties and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14(2), pp. 1154-1168. ISSN: 1533-4899. DOI: 50LU, Y.; et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook. Int J Electrochem Sci, 2019, 14, 5961-5971. ISSN: 1452-3981. DOI:
51. SMITH, A.T.; et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1(1), pp. 31-47. ISSN: 2589-9651. DOI: 52. MAO, J.; et al. Graphene aerogels for efficient energy storage and conversion. Energy & Environmental Science, 2018, 11(4), pp.772-799. ISSN: 1754-5706. DOI:
53. CHANG, L.; and HU, Y.H. Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors. Matter, 2019,1(3), pp. 596-620. ISSN: 2590-2385. DOI:
54. ZHAO, X.; et al. A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Conversion and Management, 2019,184, pp. 581-599. ISSN: 0196-8904. DOI:
55. TEO, A.J.T.; et al. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomaterials Science & Engineering, 2016, 2(4), pp. 454-472. ISSN: 2373-9878. DOI:
56. ATURALIYA R.; et al. Expanded Polytetrafluoroethylene/Graphite Composites for Easy Water/Oil Separation,. ACS Appl Mater Interfaces, 2020. 12, pp. 38241−38248. ISSN: 1944-8252. DOI:
57. SILVA, M.; ALVES, N.M.; and PAIVA, M.C. Graphene-polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies, 2018, 29(2), pp. 687-700. ISSN: 1099-1581. DOI:
58. SREEHARSHA, N.; et al. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. International Journal of Nanomedicine, 2019, 14, pp. 7419-7429. ISSN: 1178-2013. DOI:
59. XIA, M.Y.; et al. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 2019, 307, pp.16-31. ISSN: 1873-4995. DOI:
60. MA, Y.; et al. Robust and Antibacterial Polymer/Mechanically Exfoliated Graphene Nanocomposite Fibers for Biomedical Applications. ACS Applied Materials & Interfaces, 2018, 10(3), pp. 3002-3010. ISSN: 1944-8252. DOI:
61. WANG, W.R.; et al. Review-Biosensing and Biomedical Applications of Graphene: A Review of Current Progress and Future Prospect. Journal of the Electrochemical Society, 2019, 166(6), pp. 505-520. ISSN: 1945-7111. DOI:
62. KUMAR, R.; et al. Graphene as biomedical sensing element: State of art review and potential engineering applications. Composites Part B: Engineering, 2018,134, pp.193-206. ISSN: 1359-8368. DOI:
How to Cite
García-Bello, J. L., Batista-Luna, T. T., Villar-Goris, N. A., Camué-Ciria, H. M., & Cid-Pérez, D. (2023). Graphene: production, characterization and applications. Chemical Technology, 43(1), 59-80. Retrieved from