Kinetic modeling of Chlorella vulgaris cultivation in pig waste: effect of solar irradiation

Keywords: kinetic modeling; biological treatment; open culture system.

Abstract

There is an exponential increase in hog farms around the world to meet the increasing demand for protein, resulting in a significant amount of hog wastewater. Within the biological treatments, to address this problem, the cultivation of microalgae has gained importance in recent years, since its growth requires low-cost substrates and can be effective for obtaining compounds with high added value. The objective of this work is to obtain a kinetic model of a mixotrophic culture of Chlorella vulgaris in open-air pig waste that considers the effect of solar irradiation. As a result of the investigation, a kinetic model is obtained to describe the symbiotic growth of the microalgae and the Chlorella vulgaris bacterium in an open-air culture system that uses pig waste as the only source of carbon and nutrients. The model obtained makes it possible to predict the maximum concentrations of the mixed biomass considering the effect of accumulated solar radiation during the day. The optimum value of solar irradiation is 5209 W/m2h, at which 11 gl-1 of biomass are obtained. The validation of the model showed a 99,2% correlation between the observations and the predictions for variable solar irradiation conditions, indicating a good performance in practice.

References

1 NAGARAJAN, DILLIRANI, ADI KUSMAYADI, HONG-WEI YEN, CHENG-DI DONG, DUU-JONG LEE, JO-SHU CHANG. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource technology, 2019. 289: p. 121718. [Consultado 10 noviembre 2019]. Disponible en: https://doi.org/10.1016/j.biortech.2019.121718.
2. BARRETO TORRELLA, SARAH I. Y HUMBERTO VALERA DE MOYA, Estimation of Pollution Caused by Swine Production in Camaguey, Cuba. Revista de Producción Animal, 58-60, 2019. 31(1). ISSN 2224-7920.
3. ASFAK PATEL, A., et al. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere, 2021. 282: [Consultado 20 septiembre 2022]. Disponible en: https://doi.org/10.1016/j.chemosphere.2021.130881.
4. AMENORFENYO, D. K., HUANG, X., ZHANG, Y., ZENG, Q., ZHANG, N., REN, J., & HUANG, Q. (2019). Microalgae brewery wastewater treatment: potentials, benefits and the challenges. Int. J. Environ. Res. Public Health 2019, 16(11), 1910; [Consultado 23 septiembre 2022]. Disponible en: https://doi.org/10.3390/ijerph16111910.
5. GONZÁLEZ MUÑOZ, N., et al. Temperature of the mixed culture of chlorella vulgaris to open sky: incidence in biomass concentration. Tecnología Química, 2019, 39(3), 580-591.ISSN 2224 6185
6. GONZÁLEZ MUÑOZ, N. et al. Cultivo mixto de chlorella vulgaris en un fotobiorreactor a cielo abierto: parámetros ambientales que inciden en la variación de temperatura. Ciencia e innovación tecnológica, Coedición editorial Academia Universitaria-Opuntia Brava.2018.ISBN 978-959-7225-34-8.
7. ALFARO VIVES, O.G. y colaboradores Cinética de Chlorella vulgaris y bacterias en residuales porcino a cielo abierto. Ciencia e innovación tecnológica. Coedición editorial Academia Universitaria-Opuntia Brava. 2018. ISBN 978-959-7225-34-8.
8. SUNOJ, S., HAMMED, A., IGATHINATHANE, C., ESHKABILOV, S., & SIMSEK, H. Identification, quantification, and growth profiling of eight different microalgae species using image analysis. Algal Research, 2021. 60: p. 102487. [Consultado 13 noviembre 2022]. Disponible en: https://www.sciencedirect.com/journal/algalresearchDOI:10.1016/j.algal.2021.102487.
9. GARCÍA-GOZALBES, C. C. y colaboradores. Cinéticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento. Tecnología y ciencias del agua, 2015. 6(1): p. 49-68. [Consultado 20 noviembre 2020]. Disponible en: https://dialnet.unirioja.es/ejemplar/543909
10. SUN, HAN, et al. Powerful tools for productivity improvements in microalgal production. Renewable and Sustainable Energy Reviews, 2021. 152: p. 111609. [Consultado 23 septiembre 2022]. Disponible en: https://doi.org/10.1016/j.rser.2021.111609
11. LEE, E., et al, Growth kinetic models for microalgae cultivation: A review. Algal research, 2015. 12: p. 497-512. [Consultado 23 septiembre 2022]. Disponible en: https://doi.org/10.1016/j.algal.2015.10.004
12. CHANG, H. X., HUANG, Y., FU, Q., LIAO, Q., & ZHU, X. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresource technology, 2016. 206: p. 231-238. [Consultado 20 septiembre 2022]. Disponible en: https://doi.org/10.1016/j.biortech.2016.01.087
13. ALFARO-VIVES, O.G., et al., Modelo dinámico de un fotobiorreactor de capa fina, utilizado para el cultivo de la microalga Chlorella sp. y bacterias en aguas residuales de alta carga orgánica. Tecnología Química, 2017. 37(1): p. 79-93. ISSN 2224 6185
14. MARTÍNEZ GARCIA, L. Eliminación de CO2 con microalgas autóctonas. Tesis Doctoral, Instituto de Recursos Naturales, Universidad de León, León. España, 2008.
15. VOGELS, MAURICE, et al. Cerny. 1975. P. F. Verhulst’s “notice sur la loique la populations suit dans son accroissement” from correspondence mathematique et physique. Ghent, X, 1838. Journal of Biological Physics 3: 183–92. [Consultado 20 septiembre 2022]. Disponible en: http://dx.doi.org/10.1007/BF02309004.
Published
2023-06-23
How to Cite
González-Muñoz, N., Alfaro-Vives, O. G., Crespo-Sariol, H., Casañ-González, L. M., & Pérez-Silva, R. M. (2023). Kinetic modeling of Chlorella vulgaris cultivation in pig waste: effect of solar irradiation. Chemical Technology, 43(2), 223-238. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5340
Section
Artículos