Evaluation of the drying process of algal biomass using an oven and a solar dryer

  • Yisel Sánchez-Borroto Centro de Estudios de Tecnologías y Energías Renovables, Facultad de Ingeniería Mecánica, Universidad Tecnológica de la Habana “José Antonio Echeverría” (CUJAE), La Habana, Cuba https://orcid.org/0000-0002-0661-798X
  • Eliezer Ahmed Melo-Espinosa Centro de Estudios de Tecnologías y Energías Renovables, Facultad de Ingeniería Mecánica, Universidad Tecnológica de la Habana “José Antonio Echeverría” (CUJAE), La Habana, Cuba https://orcid.org/0000-0003-0516-4648
  • Beatriz Martínez-Daranas Centro de Investigaciones Marinas, Universidad de La Habana (CIM-UH), La Habana, Cuba https://orcid.org/0000-0002-2703-4097
  • Ana María-Suárez Centro de Investigaciones Marinas, Universidad de La Habana (CIM-UH), La Habana, Cuba https://orcid.org/0000-0001-7399-3929
Keywords: solar drying; macroalgal biomass; sargassum fluitans; ulva lactuca; chaetomorpha cf. gracilis.

Abstract

Nowadays marine and coastal ecosystems are threatened by the invasion of
harmful algal species. The solution to this situation should be aimed at the
integral use of this biomass. The drying process has a decisive impact on the
quality of the resulting raw material and the cost of any derived by-products. For
this reason, the objective of this research is to evaluate the drying process of
macroalgae: Sargassum fluitans, Ulva lactuca and Chaetomorpha cf. gracilis,
using a solar dryer designed for this purpose. The drying process was
evaluated at a temperature of 60°C. The results obtained reported that
dehydration in the oven lasted less than 2 hours, while in the solar dryer values
higher than those achieved in the oven were recorded. The first derivative
analysis shows that the highest peak of moisture loss is around 80 % and is
reached in the first 15 min in the electric stove. However, in solar drying it was
recorded around 45 min. The results obtained in the drying process were
adjusted to a polynomial model with a determination coefficient of 99,13 %

References

1. MARTÍNEZ GONZÁLEZ, G. Sargazo: La Irrupción Atípica de un Ecosistema
Milenario. Salud Pública de México. 2019, 61, 698-700.ISSN: 1606-7916.
2. WESTERN CENTRAL ATLANTIC FISHERY COMMISSION. Impacts of
Sargassum on Marine Resources in the Region and Utilization of Initiatives.
Bridgetown 2023.
3. SÁNCHEZ-BORROTO, Y; LAPUERTA, M; MELO-ESPINOSA, E; BOLONIO,
D; TOBÍO-PEREZ, I. and PILOTO-RODRÍGUEZ, R. Green-Filamentous
Macroalgae Chaetomorpha Cf. Gracilis from Cuban Wetlands as a Feedstock to
Produce Alternative Fuel: A Physicochemical Characterization. Energy Sources,
Part A: Recovery, Utilization, and Environmental Effects. 2018, 1-11.
ISSN:1556-7230.
4. PFEIL, M; PILOTO-RODRÍGUEZ, R; DÍAZ, Y; SÁNCHEZ-BORROTO, Y;
MELO-ESPINOSA, E; DENFELD, D. and POHL, S. Data on the
Thermochemical Potential of Six Cuban Biomasses as Bioenergy Sources.
Data in Brief 29. 2020. ISSN:2352-340922.
5. RAHBARI, H; AKRAM, A; PAZOKI, M; and AGHBASHLO, M. Bio-Oil
Production from Sargassum Macroalgae: A Green and Healthy Source of
Energy. Jundishapur Journal of Health Sciences. 2019, 11, 1-6. ISSN:2252-
0627.
6. CHEN, H. ZHOU, D. ZHANG, S. and CHEN, J. Macroalgae for Biofuels
Production: Progress and Perspectives.', Renewable and Sustainable Energy
Reviews. 2015, 47, 427-37. ISSN: 1364-0321.
7. CHIARAMONTI, D. and et al. Review and Experimental Study on Pyrolysis
and Hydrothermal Liquefaction of Microalgae for Biofuel Production. Appl
Energy, 2017, 185, 963-72. ISSN: 0306-2619.
8. SUGANYA, T. and et al. Macroalgae and Microalgae as a Potential Source
for Commercial Applications Along with Biofuels Production: A Biorefinery
Approach. Renewable Sustainable Energy Reviews. 2016, 55, 909-41. ISSN:
1364-0321.
9. MILLEDGE, J. and HARVEY, P. Potential Process „Hurdles‟ in the Use of
Macroalgae as Feedstock for Biofuel Production in the British Isles. Chemical
Technology and Biotechnology, 2016, 91, 2221-34. ISSN:1097-4660.
10. BENNAMOUN, L. and BELHAMRI, A. Design and Simulation of a Solar
Dryer for Agriculture Products. Journal of Food Engineering. 2003, 59, 259-66.
ISSN: 0260-8774.
11. EHIMEN, E.A; SUN, Z.F. and CARRINGTON, C.G. Variables Affecting the
in Situ Transesterification of Microalgae Lipids. Fuel. 2010, 89,677-84.
ISSN:0016-236.
12. JENNY, C; CHAN, C; PETER, C. and PUT, O. Comparative Studies on the
Effect of Three Drying Methods on the Nutritional Composition of Seaweed
Sargassum Hemiphyllum (Turn.) C.Ag. Journal Agricultural and Food
Chemistry. 1997, 45, 3056-59. ISSN: 0021-8561.
13. BONO, A; FRARM,Y; YASIR,S; ARIFIN, B. and JASNI, M. Production of
Fresh Seaweed Powder Using Spray Drying Technique. Journal of Applied
Sciences, 2011, 11, 2340-45. ISSN: 2076-3417.
14. SÁNCHEZ, Y. Evaluación Del Proceso De Secado De Biomasa Algal
Utilizando Una Estufa Eléctrica Y Un Secador Solar Diseñado Al Efecto. Centro
de Estudios de Tecnologías y Energías Renovables, Facultad de Ingeniería
Mecánica, Universidad Tecnológica de la Habana “José Antonio Echeverría”
(CUJAE). 2017.
15. MILLEDGE, J. J; SMITH,B; DYER, P. W. and HARVEY, P. Review
Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from
Seaweed Biomass. Energies. 2014, 7, 7194-222. ISSN: 1996-107318.
16. URIBE, E; VEGA, A; GARCÍA, V; PASTÉN, A; LÓPEZ, J. and GOÑI, G.
Effect of Different Drying Methods on Phytochemical Content and Amino Acid
and Fatty Acid Profiles of the Green Seaweed, Ulva Spp. Journal of Applied
Phycology, 2019, 31, 1967-79. ISSN: 0921-897128.
17. SUHERMAN, S; RIZKI, H; RAUF, N; and SUSANTO, E. Performance Study
of Hybrid Solar Dryer with Auxiliary Heater for Seaweed Drying. Journal of
Physics: Conference Series 1295 012002. 2019. ISSN:1742-659625.
18. SUHERMAN, S; DJAENI, M; KUMORO, A; PRABOWO, R; RAHAYU,S. and
KHASANAH, S. Comparison Drying Behavior of Seaweed in Solar, Sun and
Oven Tray Dryers. MATEC Web of Conferences. 2018. https://doi.org/10.1051/
matecconf/201815605007. ISSN:2261-236X.
19. HAMMOND, L; BAI, L; SHEEHAN, M. and WALKER, C. Experimental
Analysis and Diffusion Modelling of Solar Drying of Macroalgae-Oedogonium
Sp. Chemical engineering transactions. 2018, 65, 1-6. ISSN: 2283-9216.
20. BHEDA, B; SHINDE, M; GHADGE, R and THORAT, B. N. Drying of Algae
by Various Drying Methods. 21ST International Drying Symposium (Universitat
Politècnica De València: 2018), 1791-91. ISSN:0737-3937.
21. NICHOLAS-MUSEMBI, M; SAM-KIPTOO, K. and YUICHI, N. Design and
Analysis of Solar Dryer for Mid-Latitude Region. Energy Procedia. 2016, 100,
98-110. ISSN:1876-6102.
22. PHANG, H; CHU, C; KUMARESAN, S; RAHMAN, M. M. and YASIR, S.
Preliminary Study of Seaweed Drying under a Shade and in a Natural Draft
Solar Dryer. International Journal of Science and Engineering. 2015, 8(1), 10-
14. ISSN:0142-5919.
23. MALHEIRO, B; RIBEIRO, C; SILVA, M; CAETANO,N; FERREIRA, P. and
GUEDES, P. Learning Sustainability by Developing a Solar Dryer for
Microalgae Retrieval. Journal of Technology and Science Education. 2015, 5(4),
254-71. ISSN: 2014-5349.
24. FUDHOLI, A; SOPIAN, K; OTHMAN, M. and RUSLAN, M. Energy and
Exergy Analyses of Solar Drying System of Red Seaweed. Energy and
Buildings, 68, Part A. 2014, 121-29. ISSN:0378-7788.
25. PRAKASH, J; PUSHPARAJ, B; CARLOZZI, P; TORZILLO, G; MONTAINI,
E. and MATERASSI, R. Microalgal Biomass Drying by a Simple Solar Device.
International Journal of Solar Energy. 1997, 18, 303-11. ISSN:1477-2752.
26. AMORIM, A; NARDELLL, A and CHOW, F. Effects of Drying Processes on
Antioxidant Properties and Chemical Constituents of Four Tropical Macroalgae
Suitable as Functional Bioproducts. Journal of Applied Phycology. 2020,
https/doi.org/10.1007/510811-020-02059-7. ISSN: 2638-8081.
27. PATIL, P; REDDY, H. and et.al. Optimization of Microwave-Enhanced
Methanolysis of Algal Biomass to Biodiesel under Temperature Controlled
Conditions. Bioresource Technology. 2013, 137, 278–85. ISSN:0960-852421.
28. TIBURCIO, P; GALVEZ, F; CRUZ, L. and GAVINO, V. Optimization Oflow-
Cost Drying Methods to Minimize Lipid Peroxidation in Spirulina Platensis
Grown in the Philippines. J.Appl.Phycol. 2007, 19, 719-26. ISSN: 0921-8971B.
29. TORRES, E. and MARTÍNEZ-DARANAS, B. Lista de especies de Las
Arribazones de Macrofitobentos en cinco playas de Habana del Este, Cuba.
Revista de Investigaciones Marinas. 2019, 39 (1), 39-49. ISSN: 1991-6086.
30. SUÁREZ, A. M; MARTÍNEZ-DARANAS, B; ALFONSO-SÁNCHEZ, Y;
MOREIRA-GONZÁLEZ, A. and JOVER-CAPOTE, A. Lista Actualizada De Las Macroalgas Marinas Cubanas. Acta Botánica Mexicana. 2023, 130, 1-61.
ISSN:2448-7589.
31. DIEMUODEKE, E. and MOMOH, O.L. Design and Fabrication of a Direct
Natural Convection Solar Dryer for Tapioca. Leonardo Electronic Journal. 2011,
95-104. ISSN:1583-1078.
32. ABED, A. Design, Construction and Performance Evaluation of Solar Maize
Dryer. Agricultural Biotechnology and Sustainable Development. 2009, 2, 39-
46. ISSN: 2141-2340.
Published
2024-05-13
How to Cite
Sánchez-Borroto, Y., Melo-Espinosa, E. A., Martínez-Daranas, B., & María-Suárez, A. (2024). Evaluation of the drying process of algal biomass using an oven and a solar dryer. Chemical Technology, 44(2), 367-387. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5413
Section
Artículos