Modelling of the tubular furnace for the heating crude oil

Keywords: mathematical model; experimental identification; tubular furnaces for heating oil; energy efficiency in tubular furnaces.

Abstract

This work shows the results obtained in the study carried out in one of the
Heating Furnaces of the "Hermanos Díaz" Oil Refinery in Santiago de Cuba.
An evaluation of the main variables and disturbances involved in the crude
oil heating process is carried out, and a multivariable mathematical model of
the F-101 furnace is elaborated. Furthermore, the relevance and economic
and environmental impact of obtaining a better dynamic behaviour of the
furnace, which implies a considerable reduction in energy consumption, is
analysed. The objective of obtaining the multivariable mathematical model is
to design future control strategies to increase the energy efficiency of this
technological process, which is considered to be the largest fuel consumer in
the refining process. The results obtained through numerical simulation
allowed us to obtain, for the first time, a multivariable model with a fit (FIT) of
over 90 %. The model obtained approximated one with a first-order structure
with transport delay, taking into account the recommendations of the
specialised literature for this type of process. The validation of the model
with high precision measurements allowed obtaining a modelling error of up
to 4, 44%. Finally, based on the model obtained, the limitations of the
existing control system are evaluated and future research on the
performance of these systems is proposed.

References

1. ZHANG R, CAO Z, LI P, GAO F. "Design and implementation of an
improved linear quadratic regulation control for oxygen content in a coke
furnace", IET Control Theory and Applications, 2014,8(14), 1303-1311,
ISSN:1751-8644, DOI:10.1049
2. ABREU N E C. Ajuste de controladores en los lazos de control de
combustible en los hornos de la Refinería de Cienfuegos S.A: Marta Abreu
de las Villas. Villa Clara; 2021. Informe inédito
3. MATERÁN S M. "Eficiencia energética en refinerías de petróleo una
mirada a los esfuerzos y acciones llevadas a cabo por la industria de la
refinación a nivel internacional y regional", enerLAC: Revista de Energía de
Latinomaérica y el Caribe, 2018,II (2), 72-105, ISSN:2602-8042
4. FELIU-BATLLE V, RIVAS-PEREZ R, CASTILLO-GARCÍA F. "Design of a
PIα controller for the robust control of the steam pressure in the steam drum
of a bagasse-fired boiler", IEEE Access, 2021,9 95123-95134,
ISSN:2169-3536
5. JACAS P F, PEÑA P L, FORGAS B M R. Identificación experimetal de un
Horno Tubular de precalentamiento para futuros análisis deestrategias de
control III Conferencia Internacional de Desarrollo Energético Sostenible
CIDES 2023.
6. ISIDORI A. Nonlinear Control Systems. Third ed: Springer-Verlag 1995,
7. MAZAIRA I, LUSSON A. "Regulación Linear Mediante Modelos
Cercanos", Congeso Chileno Automática 2000, 2000
8. PEÑA PUPO L, FARIÑAS WONG E, DOMÍNGUEZ ABREU H, FONG
BARRIO J. "Ajuste del punto de operación de micro-turbinas hidráulicas a
través del método de regulación de velocidad combinada", Tecnología
Química, 2020,40 (1), 150-168, ISSN:2224-6185
9. PEÑA-PUPO L, MARTÍNEZ-GARCÍA H, GARCÍA-VÍLCHEZ E, FARIÑASWONG E Y, NÚÑEZ-ÁLVAREZ J R. "Combined method of flow-reduced
dump load for frequency control of an autonomous micro-hydropower in ac
microgrids", Energies, 2021,14 (23), 8059, ISSN:1996-1073
10. GÓNGORA D M, VAN CANEGHEM J, HAESELDONCKX D, LEYVA E
G, MENDOZA M R, DUTTA A. "Post-combustion artificial neural network
modeling of nickel-producing multiple hearth furnace", International Journal
of Chemical Reactor Engineering, 2020,18 (7), 20190191, ISSN:1542-6580.
11. RIDONG ZHANG A X, AND FURONG GAO. "Temperature Control of
Industrial Coke Furnace Using Novel State Space Model predictive Control",
2014, DOI:10.1109.
12. LI G, JI W, WEI L, YI Z. "A novel fuel supplies scheme based on the
retrieval solutions of the decoupled zone method for reheating furnace",
International Communications in Heat and Mass Transfer, 2023,141106572,
ISSN:0735-1933
13. GARG A, TANGIRALA A K. "Interaction assessment in multivariable
control systems through causality analysis", IFAC Proceedings Volumes,
2014,47 (1), 585-592, ISSN:1474-6670
14. DOMÍNGUEZ A H, PEÑA P L, MULET H M. "Simulación en tiempo real
de una columna de destilación para la prueba de controladores
programables", Tecnología Química, 2002, 22(2), 27-31.
15. HU Y, TAN C, BROUGHTON J, ROACH P A, VARGA L. "Model-based
multi-objective optimisation of reheating furnace operations using genetic
algorithm", Energy Procedia, 2017,142, 2143-2151, ISSN:1876-6102
16. CHUNSHENG W, YAN Z, ZEJUN L, FUXIANG Y. "Heat transfer
simulation and thermal efficiency analysis of new vertical heating furnace",
Case Studies in Thermal Engineering, 2019,13,100414, ISSN:2214-157X
17. HU Y, TAN C, BROUGHTON J, ROACH P A, VARGA L. "Nonlinear
dynamic simulation and control of large-scale reheating furnace operations
using a zone method based model", Applied Thermal Engineering, 2018,135,
41-53, ISSN:1359-4311
18. DEQUAN S, GUILI G, ZHIWEI G, PENG X. "Application of expert fuzzy
PID method for temperature control of heating furnace", Procedia
Engineering, 2012,29, 257-261, ISSN:1877-7058
19. CHAUDHURI U R. Fundamentals of petroleum and petrochemical
engineering: Crc Press 2016, ISBN:1439851611
20. BRENDAN S. "Robust Control Optimize Productivity in Refinery
Operations, this Advanced controler offers yield maximizing", Chemical
Engineering, 1997.
21. CARLBORG H, IREDAHL H. Modeling and temperature control of an
industrial furnace: Linköping University; 2016.
22. GEROV R, JOVANOVIC T V, JOVANOVIC Z. "Parameter estimation
methods for the fopdt model, using the lambert w function", Acta
Polytechnica Hungarica, 2021,18 (9), 141-159.
23. ARAFET P P, CHANG F, DOMINGUEZ H. Programa de Ayuda a la
Identificación Dinámica mediante Experimentos Activos. Memorias del V
Congreso Latinoamericano de Control Automático. ISPJAM 1992.
24. AGUADO B A. Temas de identificación y control adaptable: Plaza de la
Revolución, Cuba: Instituto de Cibernética, Matemática y Física 2000,
ISBN:978-959-7056-11-9,
25. GEROV R, JOVANOVIC T V, JOVANOVIC Z. "Parameter Estimation
Methods for the FOPDT Model, using the Lambert W Function", 2021,
18, 142-159.
26. CUPET. Tarea técnica para proyecto de ingeniería. Estudio para la
mejora de la eficiencia energética del horno F-101 de la unidad de
destilación atmosférica de la planta combinada #2. Reporte Interno; 2012.
Published
2025-03-10
How to Cite
Jacas-Portuondo, F., Peña-Pupo, L., Forgas-Brioso, M. R., & Mulet-Hing, M. (2025). Modelling of the tubular furnace for the heating crude oil. Chemical Technology, 45, 51-68. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5437