Energy use analysis at Melanio Hernández sugar mill
Abstract
The sugar mill lacks a process to identify the potential for thermal energy recovery and to define energy performance indicators. The objective of the research is to evaluate the use of thermal energy and the potential for heat recovery for the definition of improvements in the energy scheme of the sugar mill. A procedure is applied that includes methods of energy use analysis according to ISO 50001 standard and process integration methodologies using Aspen Energy Analyzer software. The current energy scheme satisfies both the demand for waste steam and secondary steam for the technological equipment and allows the distribution of 24 t/h of waste steam for the alcohol distillation process. The definition of 15 energy performance indicators which are not currently reported for this industry, contribute to the definition of an energy baseline and the systematic measurement of industry efficiency for continuous improvement. The current network of heat exchangers recovers 100 % of the energy and its thermal design is appropriate.
References
2. RAY, A., Kazantzis, N., Foo, D.C., Kazantzi, V., Tan, R.R., Bandyopadhyay, S. Financial Pinch Analysis for Selection of Energy Conservation Projects with Uncertainties. Chemical Engineering Transactions, 2021, 88, p. 109-114. DOI: https://doi.org/10.3303/CET2188018
3. KABEYI, M.J.B. Potential and challenges of bagasse cogeneration in the Kenyan sugar industry. Int J Creat Res Thoughts, 2022, 10 (4), p.379–526, http://doi.one/10.1729/Journal.30042
4. ARSHAD M., Ahmed, S. 2016. Cogeneration through bagasse: A renewable strategy to meet the future energy needs. Renew Sustain Energy Rev, 54, pp. 732–7. http://dx.doi.org/10.1016/j.rser.2015.10.145
5. KABEYI, M.J.B. Investigating the challenges of bagasse cogeneration in the Kenyan sugar industry. Int J Eng Sci Res Technol, 2020, 9(5), p. 7-64. http://dx.doi.org/10.5281/zenodo.3828855
6. HASAN, A.S.M.M.; Trianni, A. A Review of Energy Management Assessment Models for Industrial Energy Efficiency. Energies, 2020, 13 (21), p. 1-21. http://dx.doi.org/10.3390/en13215713
7. ROOZBEH, A., Awasthi, A., Bhuiyan, N. Industry 4.0 and demand forecasting of the energy supply chain: A literature review, Computers & Industrial Engineering, 2021, 154. p. 1-22. https://doi.org/10.1016/j.cie.2021.107128
8. RAY, A., Kazantzis, N., Foo, D.C., Kazantzi, V., Tan, R.R., Bandyopadhyay, S. Financial Pinch Analysis for Selection of Energy Conservation Projects with Uncertainties. Chemical Engineering Transactions, 2021, 88, p. 109-114. DOI: https://doi.org/10.3303/CET2188018
9. BIRRU, E., Erlich, C., Martin, A. Energy performance comparisons and enhancements in the sugar cane industry. Biomass Conversion and Biorefinery, 2029, 9, p. 267–282 https://doi.org/10.1007/s13399-018-0349-z
10. MANDALAGIRI, L., Irawan, A., Yani, S. Operability and Flexibility of Pinch Applications on Heat Exchanger Network in Chemical Industry – A Review, Journal of Chemical Process Engineering, 2021, 6 (1), p. 36 – 47, https://jurnal.teknologiindustriumi.ac.id/index.php/JCPE/index
11. ROSALES, Y., Clavelo, D., Morales, M., González M. Modificaciones en el esquema de evaporación para reducir los consumos de agua y energía en un central azucarero, Revista Centro Azúcar, 47, enero-marzo, 2020, p. 43-52. http://scielo.sld.cu/pdf/caz/v47n1/2223-4861-caz-47-01-43.pdf
12. KISS A.A. Rethinking Energy Use for a Sustainable Chemical Industry, Chemical Engineering Transactions, 2019, 76, p: 13-18 DOI: 10.3303/CET1976003
13. ESPINOSA, R., Hernández, J. P., Espinosa, J., Castellanos, J. Gestión Energética Eficiente y Análisis de los Sistemas Auxiliares en las Plantas Químicas. La Habana: Editorial Universitaria Félix Varela, 2019. ISBN 978-959-07-2326-1. http://bibliografia.eduniv.cu:8083/read/32/pdf
14. HERNÁNDEZ, J. P., de Armas, A. C., Espinosa, R., Pérez, O., Guerra, L. Procedimiento de análisis energético para la conversión de industrias de la caña de azúcar en biorrefinerías. Revista Universidad y Sociedad, 2021, 13 (5), pp. 277-288. https://rus.ucf.edu.cu/index.php/rus
15. SMITH R. (Ed). Chemical Process Design and Integration, John Wiley & Sons, Ltd., Chichester, West Sussex, UK, 2016
This work is licensed under the Creative Commons Attribution-NonCommercial.