Assessing opportunities for energy conservation in a paper machine

  • Juan Pedro Hernández-Touset Departamento de Ingeniería Química, Facultad de Química y Farmacia, Universidad Central Marta Abreu de Las Villas. Cuba
  • Lisnedys Rodríguez-González Empresa Pulpa Cuba, Trinidad, Sancti Spíritus. Cuba
  • Agustín García-Rodriguez Departamento de Ingeniería Química, Facultad de Química y Farmacia, Universidad Central Marta Abreu de Las Villas. Cuba
Keywords: energy; paper drying; heat integration.


Paper machines consume large amounts of energy and in most cases savings are possible. The drying section in the paper machine has been structurally modified through 60 years of operation, with limited use of the heat recovery system. The objective of the work is to assess the opportunities for energy conservation, through the application of energy management systems in the paper factory Methodologies are applied for energy balance and heat integration, taking into account the requirements specified by the Cuban standard ISO 50001 for energy management systems in terms of energy review. Pinch analysis is applied using HENSAD and Aspen Energy Analyzer computing resources. The proposed energy performance indicators constitute a reference for the definition of an energy baseline. Energy conservation opportunities are identified with a total annual saving of $ 48,902 that makes it feasible to execute a project of $ 35 546, whose capital cost is estimated to be recovered in 2 years.


1. YISAHAK, M, Dribssa, E, Didwania, M A. Methodology for Determination of Waste Heat and Water Recovery Potential from the Dryer Section of a Pulp and Paper Factory. International Journal of Scientific & Engineering Research. 2017,8 (5), pp. 1552-1557. ISSN 2229-5518. Disponible en:
2. LAM, E. Energy Analysis of the Drying Hood in Paper Machine 1 at Stora Enso, Nymölla Mill. Tesis de maestría inédita. Lund University, 2016. Disponible en:
3. DIACONESCU, I, Patrascu, R, Minciuc, E. Energy Efficiency Study of the Paper Making Drying Process. International Conference on Energy and Environment (CIEM), 2017, pp. 187 – 191. doi:10.1109/ciem.2017.8120806
4. KLEMEŠ, J J. Handbook of Process Integration. Minimisation of Energy and Water Use, Waste and Emissions. UK: Woodhead Publishing Limited, 2013. ISBN 978-0-8570-9593-0
5. FRANCIS, D W. Towers, M T, Browne, T C. Energy Cost Reduction in the Pulp and Paper Industry – An Energy Benchmarking Perspective. Her Majesty de Queen of Right of Canada, 2002. ISBN 0-662-66163-X. Disponible en:
6. OFICINA NACIONAL DE NORMALIZACIÓN. Sistemas de gestión de la energía - Requisitos con orientación para su uso. NCISO 50001:2011. La Habana: Oficina Nacional de Normalización. Disponible en:
7. ESPINOSA, R, Hernández, J P, Espinosa J, Castellanos J. Gestión energética eficiente y análisis de los sistemas auxiliares en las plantas químicas. Editorial Feijóo. Universidad Central Marta Abreu de Las Villas. Cuba, 2014. ISBN 978-959-250-992-4
8. MAJONIN, A. G. Principios de la tecnología papelera. Universidad Central Marta Abreu de Las Villas. Cuba, 1976.
9. ASPENTECH. Aspen Energy Analyzer V 10. Aspen Technology Inc. USA, 2017
10. TURTON, R. Richard Turton Professor, Chemical and Biochemical
Engineering [en línea], 2001 Disponible en:
11. CHEMICALOGIC STEAM TAB COMPANION. Thermodinamic and Transport Properties of Water and Steam V 2.0. [en línea]. Chemica Logic Corporation. Copyright 1999-2003. Disponible en:
12. HERNÁNDEZ, J. P. Modelación matemática de la máquina de papel en el combinado de papeles blancos. Panchito Gómez Toro. Trabajo de diploma inédito. Universidad Central Marta Abreu de Las Villas, 1985
13. HERNÁNDEZ, J P, Guevara, M, Echerri G, Rusindo, I, Espinosa R.Evaluación energética en la papelera Pulpa Cuba. Revista Centro Azúcar [en línea]. 2015, 42(4), pp. 66 – 74. ISSN 2223- 4861. Disponible en:
14. KREITH, F, Goswami, D Y. Handbook of Energy Efficiency and Renewable Energy. USA: CRC Press, 2007. ISBN 978-0-8493-1730-9
15. CHEN, X., Li, J., Liu, H., Yin, Y., Hong, M., Zeng, Z., Energy System Diagnosis of Paper-Drying Process: Part 1. Energy Performance Assessment. Drying Technology.USA: Taylor & Francis Group, 2016. ISSN: 0737-3937 [impreso] 1532-2300 [en línea] Disponible en:
16. SMITH, R. Chemical Process Design and Integration, England: John Wiley & Sons, Ltd., 2005. ISBN 0-471-48680-9.
17. ENGINEERING TOOLBOX. Fuels - Higher and Lower Calorific Values [en línea], 2003 [Consultado 13.10.2020]. Disponible en:
18. UNIDO. OPEN DATA PLATAFORM. Handy Manual. Pulp and Paper Industry. Output of a Seminar on Energy Conservation in Paper and Pulp Industry [en linea]. 1993. Disponible en:
19. AEE INTEC. Drying in paper industry [online], 2016, Disponible en: 19
20. HILL K. Improving Dryer Efficiency, Kadant Johnson Inc. [en línea], 2013, 42 p., Disponible en:
21. CONSEJO DE MINISTROS DE CUBA. Reglamento del proceso inversionista. Decreto 327/2014[en línea]. Documento publicado en Gaceta Oficial, 11/10/2014. Disponible en: inversionista-go-x-5-2015-reglas-spanish&rct
23. PETERS, M S. Timmerhaurs, K D. 1991. Plant Design and Economics for Chemical Engineers, Fourth Edition, McGraw-Hill Inc, 1991
24. CEPCI. Economic Indicators [en línea]. 2019. Disponible en:
25. Shanghai Empire Mechanical Engineering Co., Ltd. Heat Recovery System Use Gasket Plate and Frame Heat Exchanger [en línea], 2020.Disponible en:
How to Cite
Hernández-Touset, J. P., Rodríguez-González, L., & García-Rodriguez, A. (2021). Assessing opportunities for energy conservation in a paper machine. Chemical Technology, 41(1), 174-192. Retrieved from