Assessment of the use of additives to modify the salt load of process water in Moa acid leaching process
Abstract
Processing minerals with a high magnesium content is a restriction of the HPAL technology, due to the negative effects it causes, mainly in the consumption of sulfuric acid. To minimize this limitation, additives that impact the leaching
chemistry are used, so this work was carried out with the objective of evaluating the use of additives that modify the saline load of the process water, as one of the ways to treat ores that contain more than 2% magnesium at the company
Moa Nickel SA - Pedro Sotto Alba (Moa Bay). A documentary review was carried out on the additives that change the saline composition of the water, among which are those that provide iron, potassium and sodium ions, the latter being the most used. As a result of the analysis, it was found that these additives provide benefits to the leaching process such as: reduction of the final free acidity and impurities in the product liquor, increase in nickel and cobalt extractions by around 3% and reduction in sulfuric acid consumption by up to 15%, depending on the physical, chemical and mineralogical characteristics of the mineral fed to the process. It was found that the addition of sodium ions to the process water may be an attractive option to achieve a greater use of lateritic ores in the process of the Moa Nickel S.A. - Pedro Sotto Alba Company.
References
2. COBAN, Ozan, et al. Hydrometallurgical nickel and cobalt production from lateritic ores: Optimization and comparison of atmospheric pressure leaching and pug-roast-leaching processes. Acta Metallurgica Slovaca, 2021, 27(1). ISSN: 1338-1156.
3. STANKOVIĆ, Srđan, et al. Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical & Materials Engineering, 2020, 26(2), p. 199-208. ISSN: 2812- 9105.
4. STANKOVIĆ, Srđan, et al. Options for hydrometallurgical treatment of NiCo lateritic ores for sustainable supply of nickel and cobalt for European battery industry from South-Eastern Europe and Turkey. Metals, 2022, 12(5), p. 807. ISSN: 2075-4701.
5. UCYILDIZ, Ayse; GIRGIN, I. High pressure sulphuric acid leaching of lateritic nickel ore. Physicochemical Problems of Mineral Processing, 2017, 53(1), p. 475-488. ISSN:2084-4735.
6. CHALKLEY, M. E., et al. Effect of magnesium on pressure leaching of Moa laterite ore. Canadian Metallurgical Quarterly, 2010, 49(3), p. 227-234. ISSN: 0008-4433.
7. HEREDIA-KINDELAN, Maria D. Lixiviación ácida a presión de los minerales limoníticos. Minería y Geología, 1997, 14(1), p. 43-48. ISSN: 1993-8012
8. OLMO, Esteban Alfonso; NAYDA HERNÁNDEZ MARTINEZ, José Castellanos; ALFONSO, Roxana. APROVECHAMIENTO DE LA SERPENTINA NIQUELIFERA POR EL PROCESO DE LIXIVIACION ACIDA A PRESION, 2006.
9. JOHNSON, J. A.; CASHMORE, B. C.; HOCKRIDGE, R. J. Optimisation of nickel extraction from laterite ores by high pressure acid leaching with addition of sodium sulphate. Minerals engineering, 2005, 18(13-14), p. 1297-1303. ISSN: 1872-9444.
10. JOHNSON, J. A., et al. Pressure acid leaching of arid-region nickel laterite ore: Part IV: Effect of acid loading and additives with nontronite ores. Hydrometallurgy, 2005, 78(3-4), p. 264-270. ISSN: 1879-1158.
11. KAYA, Ş.; TOPKAYA, Y. High pressure acid leaching of a refractory lateritic nickel ore. Minerals engineering, 2011, 24(11), p. 1188-1197. ISSN: 1872-9444.
12. FURLÁN, M. P.; SECEN, B. S.; GRAU, J. M. SEPARACIÓN DE NÍQUEL Y COBALTO DE CATALIZADORES AGOTADOS DE HIDRODESULFURIZACIÓN (HDS) MEDIANTE LIXIVIACIÓN PARCIAL SELECTIVA DE LOS METALES SOPORTADOS CON SOLUCIONES
ACUOSAS DE H2SO4, ca. 2017.
13. DUTRIZAC, J. E.; SUNYER, A. Hematite formation from jarosite type compounds by hydrothermal conversion. Canadian Metallurgical Quarterly, 2012, vol. 51(1), p. 11-23. ISSN: 0008-4433.
14. WHITE, David T.; GILLASPIE, James D. Acid leaching of nickel laterites with jarosite precipitation. Ni–Co 2013, 2013, p. 74-95.
15. Cisneros, S.D. and D.A. Moreno, Informe de etapa 01. Diágnóstico de la situación actual de las operaciones mineras de la PSA. SCT 300134 Diseño del sistema de operación de los Depósitos de menas lateríticas de la Empresa Moa Nickel SA-Pedro Sotto Alba (PSA). 2016, CEDINIQ: Moa. Holguín. Cuba.
16. PROENZA FERNÁNDEZ, Joaquín Antonio, et al. Goethita, maghemita y hematites como menas de Ni y Co en lateritas de tipo óxido: lecciones aprendidas del estudio del distrito de Moa, Cuba. MACLA. Revista de la Sociedad Española de Mineralogía, 2022, 26, p. 156-157, 2022. ISSN: 1885-7264.
17. DOMÈNECH, C., et al. The Loma de Hierro Ni-laterite deposit (Venezuela): Mineralogical and chemical composition. Boletín de la Sociedad Geológica Mexicana, 2020, 72(3). ISSN: 1405-3322.
18. GLEESON, Sarah A.; BUTT, C. R. M.; ELIAS, M. Nickel laterites: a review. SEG Newsletter, 2003, 54, p. 1-18.
19. DE OLIVEIRA, Sonia Maria Barros; DE MOYA PARTITI, Carmen Silvia; ENZWEILER, Jacinta. Ochreous laterite: a nickel ore from Punta Gorda, Cuba. Journal of South American Earth Sciences, 2001, 14(3), p. 307-317. ISSN: 1873-0647.
20. ELIAS, Mick. Nickel laterites in SE Asia. East Asia geology exploration Technologies and Mine, 2013.
21. ARIOSA-IZNAGA, J. D. La modelación descriptiva en el ejemplo de los yacimientos lateríticos de cuba oriental. (RESUMEN DE TESIS DOCTORAL/2002). Minería y Geología, 2005, 21(1). ISSN: 1993-8012.
22. MUÑOZ GÓMEZ, J. N., et al. Modelo genético teórico de los yacimientos lateríticos asociados al macizo ofiolítico de Moa-Baracoa: implicaciones de la exploración de explotación. 2009.
23. ROJAS-PURÓN, Arturo L.; BEYRIS-MAZAR, Pedro E. Influencia de la composición mineralógica del material limonítico de frentes de explotación de la industria Pedro Sotto, Moa. Minería y Geología, 1994, 11(1), p. 13-17. ISSN: 1993-8012.
24. ROJAS-PURÓN, Arturo L. Evidencias a favor de que la goethita es la principal portadora de níquel en los horizontes lateríticos de las cortezas ferroniquelíferas. Minería y Geología, 2001, 18(3-4), p. 11-11. ISSN: 1993-8012.
25. PROENZA, Joaquín A. Mineralogía y geoquímica de Ni, Co, EGP, Sc, REE en yacimientos lateríticos. Macla Revista de la Sociedad Española de Mineralogía, 2015, 20, p. 1-7. ISSN: 1885-7264.
26. ABÍLIO, Osmar, et al. Análise do Posicionamento da Banda de Absorção: Novo Método para o Tratamento de Imagens Hiperespectrais.
27. PROENZA, JOAQUÍN A., et al. Mineralizaciones de Co en los Depósitos Lateríticos de Ni Tipo Óxido y Silicato Hidratado. Revista de la sociedad española de mineralogía. Macla, 2010, 13. ISSN: 1885-7264.
28. CARLSON, E. T.; SIMONS, C. S. Acid leaching Moa Bay’s nickel. JOM, 1960, 12(3), p. 206-213. ISSN: 1543-1851.
29. VILLANOVA DE BENAVENT, C.; PROENZA FERNÁNDEZ, J. A. Mineralogía, composición y procesos formadores de filosilicatos de Ni en lateritas niquelíferas (serpentina-Ni y garnieritas): EMP, MET y espectroscopía Raman. MACLA. Revista de la Sociedad Española de Mineralogía, 2021, 25, p. 5-7, 2021. ISSN: 1885-7264.
30. RODRIGUEZ, Alfonso Chang. Caracterización geoquímica y mineralógica de la corteza de meteorización del yacimiento San Felipe. Editorial Universitaria, 2015. ISSN: 2218-3620.
31. AGIN, Jérôme; LE QUESNE, Yves; BERTHOMIEU, Bertrand. Process for the hydrometallurgical treatment of a lateritic nickel/cobalt ore and process for producing nickel and/or cobalt intermediate concentrates or commercial products using it. U.S. Patent No 8,287,827, 16 Oct. 2012. ISSN: 2218-3620.
32. COBAS BOTEY, R. M.; FORMELL CORTINA, Francisco; LEYVA RODRÍGUEZ, Carlos A. Modelo geológico descriptivo del yacimiento laterítico San Felipe, Camagüey, Cuba. Minería y Geología, 2017, 33(3), p. 251-264. ISSN: 1993-8012.
33. WHITTINGTON, B. I., et al. Pressure acid leaching of arid-region nickel laterite ore: Part I: Effect of water quality. Hydrometallurgy, 2003, 70(1-3), p. 31-46. ISSN: 1879-1158
34. Mérida, L.O.E.A., et al. Precipitación de níquel y cobalto de los licores obtenidos por percolación de minerales serpentinícos. In cuarta convención cubana de ciencias de la tierra, GEOCIENCIAS´2011
35. ANDERSON, Corby, et al. (ed.). Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt. Springer Nature, 2021.
36. BRITT, A. F.; CZARNOTA, K. A review of critical mineral resources in Australia. Australian Journal of Earth Sciences, 2024, 71(8), p. 1016-1049. ISSN: 0812-0099.
37. ELIAS, Mick. Nickel laterite deposits-geological overview, resources and exploitation. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 2002, 4, p. 205-220.
38. DALVI, Ashok D.; BACON, W. Gordon; OSBORNE, Robert C. The past and the future of nickel laterites. En PDAC 2004 International Convention, Trade Show & Investors Exchange. The prospectors and Developers Association of Canada Toronto, 2004. p. 1-27.
39. DONG, L. I., et al. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching. Transactions of Nonferrous Metals Society of China, 2011, 21(1), p. 191-195. ISSN: 1003-6326.
40. KING, Michael G. Nickel laterite technology—Finally a new dawn? JOM, 2005, 57(7), p. 35-39. ISSN: 1543-1851.
41. NEUDORF, David; HUGGINS, David. Method for nickel and cobalt recovery from laterite ores by combination of atmospheric and moderate pressure leaching. U.S. Patent Application No 11/165,362, 2 Feb. 2006.
42. TAYLOR, M.; ZUNDEL, W.; LANE, J. Ore conditioning process for the efficient recovery of nickel from relatively high magnesium containing oxidic nickel ores. U.S. Patent No 3,804,613, 16 Abr. 1974.
43. MARSHALL, D.; BUARZAIGA, M. Effect of process water on high pressure sulphuric acid leaching of laterite ores. En International Laterite Nickel Symposium 2004(as held during the 2004 TMS Annual Meeting). 2004. p. 263-271.
44. WHITTINGTON, B. I., et al. Pressure acid leaching of arid-region nickel laterite ore: Part II. Effect of ore type. Hydrometallurgy, 2003, 70(1-3), p. 47-62. ISSN: 1879-1158.
45. ROBINSON, D., et al. Developments in the hydrometallurgical processing of nickel laterites. En Proceedings of COM. 2017. p.66.
46. WHITTINGTON, B. I.; JOHNSON, J. A. Pressure acid leaching of arid-region nickel laterite ore. Part III: Effect of process water on nickel losses in the residue. Hydrometallurgy, 2005, 78(3-4), p. 256-263. ISSN: 1879-1158
47. WANG, Yizhao, et al. Transformation of Sodium Jarosite to Hematite in Hydrothermal Iron Precipitation Process. En 7th International Symposium on High‐Temperature Metallurgical Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. p.635-642.
48. KYLE, J. H. Jarosite/alunite in nickel laterite leaching—friend or foe. En Conference Proceedings: ALTA. 2003.
49. DUYVESTEYN, Willem PC. Leaching nickeliferous oxide ores. U.S. Patent No 4,195,065, 25 Mar. 1980.
50. MCDONALD, R. G.; WHITTINGTON, B. I. Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy, 2008, 91(1-4), p. 35-55. ISSN: 1879-1158.
51. Sefton, V.B., et al., Patente US. 4,193,970 A Process for precipitating iron in the form of jarosite, 1980.
52. PETRUS, R. Comportamiento geoquímico de los componentes principales y nocivos en el yacimiento Camarioca Sur y su incidencia en la explotación. Tesis Doctoral. Departamento de Geología. 2012.
53. PÉREZ JARA, Y. Comportamiento geoquímico de los componentes principales y nocivos del yacimiento zona septentrional. Tesis Doctoral. Departamento de Geología. 2013.
54. BORGES DURÁN, Y. Comportamiento de la Planta Espesadores de Pulpa en la empresa Pedro Sotto Alba, a partir de la adición de sulfato de hierro heptahidratado. 2008. Tesis Doctoral. Departamento Metalurgia-Química.
55. QUENEAU, P. B., et al. Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore. Metallurgical Transactions B, 1984, 15(3), p. 433-440. ISSN: 1543-1916.
56. ZHANG, Zhen-fang, et al. Nickel extraction from nickel laterites: Processes, resources, environment and cost. China Geology, 2025, 8(1), p. 187-213. ISSN: 2589-9430.
This work is licensed under the Creative Commons Attribution-NonCommercial.
![]()












Universidad de Oriente