Nickel removing of the system Ni(II)-NH3-CO2-SO2-H2O by electrocoagulation on an bank scale. Part II
Abstract
The nickel removal of the system Ni(II)-NH3-CO2-SO2-H2O was studied by electrocoagulation in a cylindrical reactor with agitation, of 25 L of useful capacity and two pair of Al/Al electrodes. Effluentliquor from the distillation process of the nickel-producer plant in Punta Gorda, Cuba, was processed with nickel concentration from 300 to 652 mg/L, at a current density of 8,3 mA/cm2, 60 ºC and pH 8,64 (+/-0,033). An average removal efficiency of 99,65 (+/-0,07) % was obtained, an equilibrium concentration less than 2 mg/L and an adsorption capacity between 3342 and 7264 mg/g. According to the kinetic and equilibrium analysis, it is considered that the process is probably under the control of the resistance of the chemical reaction mechanisms and its autocatalytic contribution. The operation costs for electrical energyand electrode consumption were between 11,122 y 16,022 CUP/kg of removed nickel and the specific energy consumption of 1,709 to 2,342 kW-h/kg of Al.
References
2. SABEDOT-PERTILE, T., JONKO, E. Treatment of hydrocyanic galvanic effluent by electrocoagulation. Korean J ChemEng[en línea]. 2017, 34(10). ISSN: 1975-7220. DOI: 10.1007/s11814-017-0178-y
3. SHUNXI-ZHANG, XIAOHONG-YANG, et al. Treatment of wastewater containing nickel by electrocoagulation. Environ. Eng. Sci.[en línea]. 2017,34(12). 861–871. ISSN: 1557-9018, DOI: 10.1089/ees.2016.0621
4. BEYAZIT, N. Copper (II), Chromium (VI) and Nickel (II) Removal from Metal Plating Effluent by Electrocoagulation. Int. J. Electrochem. Sci.[en línea]. 2014, 9(8). 4315 – 4330. ISSN: 1452-3981.
5. LEKHLIF, B., OUDRHIRI, L., ZIDANE, F., et al. Study of the electrocoagulation of electroplating industry wastewaters charged by nickel (II) and chromium (VI). J. Mater. Environ. Sci. 2014, 5(1). 111-120. ISSN: 2028-2508.
6. KALEEM, M. K, et al. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals by Electrocoagulation Method. J. Korean Chem. Soc.[en línea]. 2013, 57(3). 316-321. ISSN: 1229-5949. DOI: 10.5012/jkcs.2013.57.3.316
7.MANSOUR, S. E; HASIEB, I. H. Removal of Nickel from drinking water by electrocoagulation technique using alternating current. Curr. Res. Chem.[en línea]. 2012, 4(2). 41-50. ISSN: 2348-5221. DOI: 10.3923/crc.2012.41.50
8. AL‑QODAH, Z., AL‑SHANNAG, M. Heavy metal ions removal from wastewater using electrocoagulation processes. Sep. Sci. Technol. [en línea]. 2017, 52(17). 2649-2676. ISSN: 1520-5754. DOI: 10.1080/01496395.2017.1373677
9. ROJAS-VARGAS, A., et al. Lixiviación carbonato amoniacal: estimación del níquel disuelto en el efluente de destilación. Revista de Metalurgia [en línea]. 2019, 55(3). 1-11. ISSN-L: 0034-8570. DOI: 10.3989/revmetalm.149
10.ROJAS-VARGAS, A., RICARDO-RIVERON, et al. Remoción de níquel por electrocoagulación del sistema Ni(II)-NH3-CO2-SO2-H2O con electrodos de aluminio. Tecnología Química[en línea]. 2020, 40(2). ISSN: 2224-6185.
11. NARIYAN, E., SILLANPÄÄ, M., et al. Electrocoagulation treatment of mine water from the deepest working European metal mine - Performance, isotherm and kinetic studies. Sep. Purif. Technol. 2017, 177, 363–373. e-ISSN: 1383-5866. DOI: 10.1016/j.seppur.2016.12.042
12. INYINBOR A.A., ADEKOLA, F.A., OLATUNJI, G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of RhodamineBdye on to Raphiahookerie fruit epicarp. Water Resources and Industry. 2016, 15. 14–27.e-ISSN: 2212-3717.DOI: 10.1016/j.wri.2016.06.001
13. IDOWU-ADEOGUN, A., BABU-BALAKRISHNAN, R. Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of dye rhodamine B. Appl Water Sci.2015.e-ISSN: 2190-5495. DOI: 10.1007/s13201-015-0337-4
14. ÇIRIĞ, N.S., KUBILAY, Ş., SAVRAN, A., et al. Kinetics and Thermodynamic Studies of Adsorption of Methylene Blue. IOSR-JAC, [en línea]. 2017, 10(5). 53-63. ISSN: 2278-5736. DOI: 10.9790/5736-1005015363
15. KAMARAJ, R., GANESAN, P., VASUDEVAN, S. Removal of lead from aqueous solutions by electrocoagulation: isotherm, kinetics and thermodynamic studies. Int. J. Environ. Sci. Technol. 2015, 12. 683–692. e-ISSN: 1735-1472. DOI: 10.1007/s13762-013-0457-z
16. YOOSEFIAN, M., AHMADZADEH, S., AGHASI, M., et al. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. J. Mol. Liq. 2016. DOI: 10.1016/j.molliq.2016.11.093
17. AYAWEI, N., EBELEGI, A.N., WANKASI, D. Modelling and Interpretation of Adsorption Isotherms.J. Chem-NY. 2017. ISSN: 2090-9071. DOI: 10.1155/2017/3039817
18. YUTINAN-QIAN. Explore adsorption comprenssion using computational and experimental methods. [Johns Hopkins University]. (Thesis for the degree of Master of Science), 2019.
19. RISA-VIEIRA, A. Surface complexation modeling of Pb(II), Cd(II) and Sc(II) onto iron Hydroxide in single a bisolute systems. [University of Texas Austin]. (Thesis for the degree of Doctor of Philosophy), 2006.
20. PILON, L., WANG, H., D’ENTREMONT, A. Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. J. Electroch. Soc., 2015, 162(5). A5158-A5178.ISSN. 0013-4651
21. PINZÓN, B. M.L., VERA, V.L.E. Cinética de bioadsorción de Cr (III) usando cáscara de naranja. Dyna.2009, 160, 95-106. ISSN 0012-7353.
22. QINGWEN-HE. Investigation of stabilization mechanisms for colloidal suspension using nanoparticles. [University of Louisville]. (Thesis for the degree of Doctor of Philosophy), 2014.
23. STUMM-WERNER. The Inner-Sphere Surface Complex. A Key to Understanding Surface Reactivity. 1995, J. Am. Chem. Soc. ID: 0065-2393/95/0244-0001$09.28/0.
24. SABÍN, F.J.D. Estabilidad coloidal de nanoestructuras liposómicas. [Universidad de Santiago de Compostela]. (Tesis Doctoral), 2007.
This work is licensed under the Creative Commons Attribution-NonCommercial.