Uncertainty of nickel chemical analysis in paired samples of lateritic ore, NiS and NiO by linear regression
Abstract
Interlaboratory comparison is an instrument for evaluating the laboratory performance in specific tests. In this work, the uncertainty in the quantitative
chemical analysis of the nickel concentration was determined in paired solid samples of the materials: lateritic ore (LO), nickel sulfide (NiS) and sintered
nickel oxide (NiO), using the simple linear regression. The analytical determinations were made by Atomic Absorption Spectrometry (AAS) with the
participation of three laboratories of the corporative group for the production of nickel in Cuba. The assumptions of the linear regression model were verified
using the Durbin-Watson statistic, homoscedasticity and normality test. The uncertainty in the slope (Sm), the uncertainty in the intercept (Sb) and the
standard deviation of the measurement (Sy) were determined. As a result, the expected value (x) of the nickel concentration presented a maximum error according to: LO: 0,06 %, NiS: 0.51 % y NiO: 0,33 % at the extreme ends of the measurement range. This method provides information to evaluate the
laboratories continuous performance, and in turn the historical database of interlaboratory comparison is analyzed.
References
interlaboratorios – parte 1: desarrollo y funcionamiento de programas de
ensayos de aptitud.
2. BERNI, R., CAROBBI, C. Alternative statistical analysis of interlaboratory
comparison measurement results. XXI IMEKO World Congress
“Measurement in Research and Industry” August 30 - September 4, 2015,
Prague, Czech Republic. https://www.imeko.org/publications/wc2015/IMEKO-WC-2015-TC21-382.pdf
3. KADIS, R.L. Measurement Uncertainty and Chemical Analysis. J. Anal.
Chem. [en línea]. 2008, 63(1). 95–100. ISSN 1061-9348. DOI:
10.1134/S1061934808010188
4. JCGM 200:2008. International Vocabulary of Metrology – Basic and
General Concepts and Associated Terms (VIM). 3rd Edition (Bilingual E/F).
Cited by: Evaluation of measurement data – An introduction to “Guide to the
expression of uncertainty in measurement” and related documents OIML G
1-104 Edition 2009 (E).
5. KADIS, R. Evaluation of measurement uncertainty in analytical chemistry:
related concepts and some points of misinterpretation. Dissertation for the
commencement of the Degree of Doctor of Philosophy in Chemistry.
University of Tartu, 2008. http://dspace.ut.ee/handle/10062/6720?show=full
6. CRUMPLER, T.B., YOE, J.H. Chemical computations and errors. New
York: John Wiley and Sons; London: Chapman and Hall, 1940. Ch. VII.
7. QUEENIE, S.H.C. Uncertainties Related to Linear Calibration Curves: A
Case Study for Flame Atomic Absorption Spectrometry. J. Braz. Chem.
Soc. [en línea]. 2007, 18(2). 424-430. ISSN: 1678-4790.
DOI:10.1590/S0103-50532007000200027
8. YATKIN, S., TRZEPLA, K., HYSLOP, P., et al. Comparison of a priori and
interlaboratory-measurement-consensus approaches for value assignment
of multi-element reference materials. Microchem. J. [en línea]. 2020. 158,
105225. ISSN 0026-265X. DOI: 10.1016/j.microc.2020.105225
9. RAWSKI, R.I., SANECKI, P.T., KIJOWSKA, K.M., et al. Regression
Analysis in Analytical Chemistry. Determination and Validation of Linear and
Quadratic Regression Dependencies. S. Afr. J. Chem. [en línea]. 2016, 69.
166-173. ISSN 0379-4350. DOI:10.17159/0379-4350/2016/v69a20
10. CHEN, H.Y.; CHEN, C. Evaluation of Calibration Equations by Using
Regression Analysis: An Example of Chemical Analysis. Sensors [en línea].
2022. 22(2). 447. ISSN 1424-8220. DOI: 10.3390/s22020447
11. RAPOSO, F. Evaluation of analytical calibration based on least-squares
linear regression for instrumental techniques: A tutorial review. Trends.
Analyt. Chem. [en línea]. 2016, 77. 167–185. ISSN: 0165-9936. DOI:
10.1016/j.trac.2015.12.006
12. DEVORE, J.L. Probabilidad y Estadística para Ingeniería y Ciencias.
Séptima Edición. California Polytechnic State University, San Luis Obispo.
2008, 742 p. ISBN-13: 978-607-481-338-8
This work is licensed under the Creative Commons Attribution-NonCommercial.