Uncertainty estimation for Cobalt and Iron determinations in paired samples of NiS and NiO by linear regression

Keywords: interlaboratory comparison; lineal regression; uncertainty


Interlaboratory comparison provides experimental evidence on the lab continuous performance to realize specific tests. In this work, uncertainty of measurements and the interlaboratory error for the chemical analysis of cobalt and iron was determined in paired samples of nickel sulfide (NiS) and sintered nickel oxide (NiO), using the least-squares linear regression. The analytical determinations were made by Atomic Absorption Spectrometry (AAS) with the participation of two laboratories of the corporative group for the production of nickel in Cuba. The assumptions of the linear regression model were verified using the Durbin-Watson statistic, homoscedasticity and normality test. The uncertainty in the slope (Sm), in the intercept (Sb) and the standard deviation of the measurement (Sy) were determined  As a result, the uncertainty (Sx0) associated with the expected value (x0) and error (ξ) in cobalt determination was Sx0 = 0,3 % and ξ =  0,60 % in Nickel Sulfide (NiS), and Sx0 = 0,03 % and ξ =  0,05 % in Nickel Oxide (NiO). As for iron determination, it was obtained Sx0 = 0,16 % and ξ =  0,32 % in NiS, and Sx0 = 0,05 % and ξ =  0,09 % in NiO. This method uses the historic database of interlaboratory comparison and provides information to strategic management decisions.


1. HUND, E., MASSART, D., SMEYERS-VERBEKE, J. Inter-laboratory studies
in analytical chemistry.Anal. Chim. Acta,[en línea]. 2000, 423(2), 145-165. DOI:
2. HIBBERT, D. B., KORTE, E., ÖRNEMARK, U. Metrological and quality
concepts in analytical chemistry (IUPAC Recommendations 2021). Pure Appl.
Chem. [en línea]. 2021. ISSN 1365-3075. DOI:10.1515/pac-2019-0819
3. NC ISO/IEC GUÍA 43-1/1997, IDT. Ensayos de aptitud por comparaciones
interlaboratorios – parte 1: desarrollo y funcionamiento de programas de
ensayos de aptitud.
4. ALLARD, A., AMAROUCHE, S. Analysis of interlaboratory comparison when
the measurements are not normally distributed. 18th International Congress of
Metrology, 2017, 12003. DOI: 10.1051/metrology/201712003
5. JCGM 200:2008. International Vocabulary of Metrology – Basic and General
Concepts and Associated Terms (VIM). 3rd Edition (Bilingual E/F). Cited by:
Evaluation of measurement data – An introduction to “Guide to the expression
of uncertainty in measurement” and related documents OIML G 1-104 Edition
2009 (E).
6. KADIS, R.L. Measurement Uncertainty and Chemical Analysis. J. Anal.
Chem. [en línea]. 2008, 63(1), 95–100. ISSN 1061-9348.
7. KADIS, R. Evaluation of measurement uncertainty in analytical chemistry:
related concepts and some points of misinterpretation. Dissertation for the
commencement of the Degree of Doctor of Philosophy in Chemistry. University
of Tartu, 2008. http://dspace.ut.ee/handle/10062/6720?show=full
8. CRUMPLER, T.B., YOE, J.H. Chemical computations and errors. New York:
John Wiley and Sons; London: Chapman and Hall, 1940. Ch. VII.
9. QUEENIE, S.H.C. Uncertainties Related to Linear Calibration Curves: A
Case Study for Flame Atomic Absorption Spectrometry. J. Braz. Chem. Soc. [en
línea]. 2007, 18(2). 424-430. ISSN: 1678-4790. DOI:10.1590/S0103-
10. BERNI, R., CAROBBI, C. Alternative statistical analysis of interlaboratory
comparison measurement results. XXI IMEKO World Congress “Measurement
in Research and Industry” August 30 - September 4, 2015, Prague, Czech Republic. https://www.imeko.org/publications/wc-2015/IMEKO-WC-2015-TC21-
11. TELLINGHUISEN, J. Least Squares Methods for Treating Problems with
Uncertainty in x and y. Anal. Chem. [en línea]. 2020, 92, 10863−10871. DOI:
12. YATKIN, S., TRZEPLA, K., HYSLOP, P., et al. Comparison of a priori and
interlaboratory-measurement-consensus approaches for value assignment of
multi-element reference materials on PTFE filters. Microchem. J. [en línea].
2020, 158, 105225. ISSN 0026-265X. DOI: 10.1016/j.microc.2020.105225
13. ISO 13528:2015 Statistical methods for use in proficiency testing by
interlaboratory comparison.
14. RAWSKI, R.I., SANECKI, P.T., KIJOWSKA, K.M., et al. Regression
Analysis in Analytical Chemistry. Determination and Validation of Linear and
Quadratic Regression Dependencies. S. Afr. J. Chem. [en línea]. 2016, 69. 166-
173. ISSN 0379-4350. DOI:10.17159/0379-4350/2016/v69a20
15. CHEN, H.Y.; CHEN, C. Evaluation of Calibration Equations by Using
Regression Analysis: An Example of Chemical Analysis. Sensors, [en línea].
2022, 22(2), 447. ISSN 1424-8220. DOI: 10.3390/s22020447
16.RAPOSO, F. Evaluation of analytical calibration based on least-squares
linear regression for instrumental techniques: A tutorial review. Trends in
Analytical Chemistry. [en línea]. 2016, 7. 167–185. ISSN: 0165-9936. DOI:
17. VARGAS, A.R., NIEVES, M.E.T., DÍAZ, Y.G. Ammoniacal Carbonate
Leaching: effect of dissolved sulfur in the distillation operation, Acta Chim. Slov.
[en línea]. 2020, 67, 1239–1249. ISSN: 1580-3155.
18. DEVORE, J.L. Probabilidad y Estadística para Ingeniería y Ciencias.
Séptima Edición. California Polytechnic State University, San Luis Obispo.
2008, 742 p. ISBN-13: 978-607-481-338-8
19. RAMSEY, M. H., ELLISON, S L R., ROSTRON, P. (eds.) Measurement
uncertainty arising from sampling: a guide to methods and approaches. Second
Edition, Eurachem, 2019, 119 p. ISBN 978-0-948926-35-8.
20. KONIECZKA, P. The role of and the place of method validation in the
Quality assurance and Quality Control (QA/QC) system. Crit. Rev. Anal. Chem.
[en línea]. 2007, 37(3), 173-190. ISSN: 1547-6510. DOI:
How to Cite
Rojas-Vargas, A., Ricardo-Riverón, A., Ojeda-Armaignac, E., & Serrat-Guasch, N. (2024). Uncertainty estimation for Cobalt and Iron determinations in paired samples of NiS and NiO by linear regression. Chemical Technology, 44(1), 107-121. Retrieved from https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5395

Most read articles by the same author(s)