Application of statistical control chart X-Rm for monitoring the water vapor pressure in a thermoelectric power plant
Abstract
The principles of the statistical control chart are satisfactory for identifying situations where assignable causes may be adversely affecting the quality of a process or product. The purpose of this research was designing a control chart for monitoring the water vapor pressure (Pv) in the outlet stream of a vapor
generator in a thermoelectric power plant. Moving range control chart (X-Rm) was selected, this included 1595 measurements coming from a normal distribution. The Center Line was 13,33 MPa, Lower Control Limit 13,22 MPa and Upper Control Limit 13,44 MPa. Non-random variation patterns were identified such as downward and upward trend, downward and upward shift, and data stratification; possibly due to general causes: little standardization, mismatches and gradual deterioration of equipment, instruments and accessories, and deposition of waste. This project is expected to contribute to
the proper use of the installed thermal power capacity.
References
FARNOOSH, A. Power Generation from Coal, Oil, Gas, and Biofuels. In: Hafner, M., Luciani, G. (eds). The Palgrave Handbook of International Energy Economics. Palgrave Macmillan, Cham. 2022. https://doi.org/10.1007/978-3-030-86884-0_6
RODRÍGUEZ A.A.D., ROSABAL P.L.B. Aspectos esenciales para lograr el uso eficiente del combustible nacional en las centrales termoeléctricas cubanas. Revista Universidad y Sociedad, 15(4), 2023, 65-75. ISSN 2218-3620.
DEVORE, J.L. Probabilidad y Estadística para Ingeniería y Ciencias. Séptima Edición. México. 2008. 742 p. ISBN-13: 978-607-481-338-8.
WALPOLE, R.E., Raymond H.M., Sharon, L.M., Keying Ye. Probabilidad y estadística para ingeniería y ciencias. Pearson Educación. México. 2012. 816 p. ISBN: 978-607-32-1417-9.
SHAMSUZZAMAN, M., JASIM, E., ALSYOUF, I. Application of statistical process control chart for monitoring electric power losses through transmission and distribution system. Proceedings 2016, International
Conference on Ind. Eng. and Operations Management. Detroit, Michigan, USA, 2016.
KISIC, E., PETROVIC, V., JAKOVLJEVIC, M., DJUROVIC, Z. Fault detection in electric power systems based on control charts. Serb. J. Electr. Eng., 2013, 10(1), 73-90.
BAE, S.J., MUN, B.M., CHANG, W., VIDAKOVIC, B. Condition monitoring of a steam turbine generator using wavelet spectrum based control chart. Reliab. Eng. Syst. Safe., 2017, 184, 13-20.
COANDĂ, P., AVRAM, M., CONSTANTIN, V. Predictive maintenance techniques. IOP Conference Series Materials Science and Engineering, 2020, 997(1), 012039. https://doi.org/10.1088/1757-899X/997/1/012039
VILAS, F.M.B, DA SILVA, L.E.B., VILLA, H.F.N. Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules. Energies 2021, 14, 4924.
ZAMAN, M., HASSAN, A. X-bar Control Chart Patterns Identification Using Nelson’s Run Rules. Proceedings of the 11th Annual International Conference on Ind. Eng. and Operations Management Singapore, March 7-
, 2021.
GRIFFITHS, D., BUNDER, M., GULATI, C., ONIZAWA, T. The probability of an out of control signal from Nelson´s supplementary Zig-Zag test. J. Stat. Theory Pract. 2010, 4, 609–615.
KISIĆ, E., ĐUROVIĆ, Ž., PETROVIĆ, V. Predictive Maintenance Based on Control Charts Applied at Thermoelectric Power Plant. En InTech eBooks. 2017. https://doi.org/10.5772/intechopen.68685
SHBOOL, M.A., ALANAZI, B. Application of condition-based maintenance for electrical generators based on statistical control charts. MethodsX, 2023, 11, 102355. https://doi.org/10.1016/j.mex.2023.102355
GUTIÉRREZ, P.H., DE LA VARA, R.S. Control Estadístico de Calidad y Seis Sigma. McGraw-Hill, México. 2009. 502p. ISBN: 978-970-10-6912-7.
ZHAO, C., WANG, C., HUA, L., LIU, X., ZHANG, Y., HU, H. Recognition of control chart pattern using improved supervised locally linear embedding and support vector machine. GCMM 2016. Procedia Engineering, 2017,
281-288. https://doi.org/10.1016/j.proeng.2017.01.138
ŞENGÖZ, N. G. Control Charts to Enhance Quality. En InTech eBooks. 2018. https://doi.org/10.5772/intechopen.73237
ZHANG, M., CHENG, W. Recognition of mixture control chart pattern using multiclass support vector machine and genetic algorithm. Math. Probl. Eng. 2015. http://dx.doi.org/10.1155/2015/382395
ZAN, T., SU, Z., LIU, Z., CHEN, S., WANG, M., GAO, X. Pattern recognition of different window size control charts based on convolutional neural network. Symmetry, 2020, 12. 1472. https://doi.org/10.3390/sym12091472
UST, Y., GONCA, G., KAYADELEN, H. K. Optimum reheat pressures for single and double reheat irreversible Rankine cycle, J. Energy Inst., 2011, 84(4). 215-219. https://doi.org/10.1179/174396711X13116932751994
DAS, K. R. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat., 2016, 5(1),5.https:doi.org/10.11648/j.ajtas.20160501.12
JENSEN, W., ALEXANDER, M. Statistics for Engineering and the Sciences. J. Qual. Technol., 2016. 48(3). 297–299.
ZHANG, M., YUAN, Y., WANG, R., CHENG, W. Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM. Pattern. Anal. Applic. 2020, 23. 15-26.
https://doi.org/10.1007/s10044-018-0748-6
NOSKIEVIČOVÁ, D. Complex Control Chart Interpretation. Int. J. Eng. Bus. Manag., 2013, 5(13).
This work is licensed under the Creative Commons Attribution-NonCommercial.