Thermal evaluation of a multipurpose solar dryer
Abstract
Solar drying of food is one of the oldest methods of preservation and is used both naturally and with specialized equipment. This study aimed to evaluate the
thermal performance of a multipurpose solar dryer with a capacity of 12 m³, located at the Solar Energy Research Center (CIES), built in the 1980s and
currently operating under conditions different from its original design. Temperature measurements were taken in the drying chamber using an infrared
camera to obtain thermal profiles and calculate the heat transfer coefficient, comparing it with the values reported during the design stage. Measurements
were conducted with the ventilation system turned off and in operation. The results showed maximum temperatures of 79,8 °C without ventilation and
73,7 °C with ventilation, highlighting the regulating effect of the ventilation system on the thermal behavior of the dryer. An approximate increase of 6 °C in
the temperature of the material being dried was observed when the ventilation was active. The obtained heat transfer coefficient indicated that the current
thermal efficiency of the equipment is 98.8% compared to the design efficiency, suggesting that the dryer maintains thermal performance close to its original condition and does not require structural modifications from a technical-economic perspective.
References
2. ESPINOZA, Jaime. Innovación en el deshidratado solar. Ingeniare. Revista chilena de ingeniería, 2016, 24 (Especial), p. 72-80. [ref. de 18 noviembre
2025]. Disponible en: https://www.scielo.cl/scielo.php?pid=S0718-33052016000500010&script=sci_arttext&tlng=en
3. GUAPULEMA MAYGUALEMA, Rocío, et al. Evaluación de la eficiencia de un sistema de secado solar directo para granos de cacao en tena. Centro
Azúcar, 2023, 50(3). [ref. de 8 enero 2026]. Disponible en: http://scielo.sld.cu/scielo.php?pid=S222348612023000300034&script=sci_arttext
4. ANDRADE LANDEROS, Luis Alfredo; ZAYAS BARRERAS, Imelda; RUBIO GASTELUM, Karen. Aprendizaje basado en proyectos: deshidratadora solar en el nivel medio superior del CBTA 116 como trascendencia de vida. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 2025,15(30). [ref. de 8 enero 2026]. Disponible en:https://www.scielo.org.mx/scielo.php?p200774672025000100006&script=sci_arttext
5. BENÍTEZ, Gustavo Manuel; TOLEDO, Jorge Fernando Toledo; OCHOA, Laura Lidia Martínez. Implementación de un prototipo de calentador solar para evaluar las variaciones de temperatura producidas en el interior de un cuarto de estudio en la ciudad de Loja. AlfaPublicaciones, 2025, 7(21), p. 122-149. [ref. de 7 junio 2025]. Disponible en: https://doi.org/10.33262/ap.v7i2.1.613
6. LIANG, Xiaolong, et al. Advancing railway infrastructure maintenance: Thermodynamic parameter inversion of ballast bed and feasibility assessment of fouling detection via infrared thermography (IRT). Infrared Physics & Technology, 2024, 141, p. 105398. [ref. de 15 mayo 2025]. Disponible en: https://doi.org/10.1016/j.infrared.2024.105398
7. ZHANG, Dongjie, et al. An in-situ detection method for assessing the thermal transmittance of building exterior walls using unmanned aerial vehicle–infrared
thermography (UAV-IRT). Journal of Building Engineering, 2024, 91, p. 109724. [ref. de 3 abril 2025]. Disponible en: https://doi.org/10.1016/j.jobe.2024.109724
8. YOUSUF, Adeel; KHAWAJA, Hassan; VIRK, Muhammad S. A review of infrared thermography applications for ice detection and mitigation. Cold
Regions Science and Technology, 2024, 218, p. 104058. [ref. de 5 abril 2025]. Disponible en: https://doi.org/10.1016/j.coldregions.2023.104058
9. TANDA, Giovanni; MIGLIAZZI, Mauro. Infrared thermography monitoring of solar photovoltaic systems: A comparison between UAV and aircraft remote
sensing platforms. Thermal Science and Engineering Progress, 2024, 48,p. 102379. [ref. de 11 abril 2025]. Disponible en: https://doi.org/10.1016/j.tsep.2023.102379
10. RAMOS, Julio Lázaro, et al. Heat-loss measurement using infrared thermography by multi-threshold analysis. Applied Thermal Engineering, 27; 2025, p. 127433. [ref. de 1 marzol 2025]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1359431125020253.
11. TORRES-TEN, Alonso, et al. Comportamiento térmico de un secador solar multipropósito con paneles aislantes autoportables. I Parte. Tecnología
Química, 2013, 33(2), p. 170-180. Consultado 21 de febrero 2025. Disponible en: http://scielo.sld.cu/scielo.php
pid=S222461852013000200006&script=sci_arttext&tlng=en
This work is licensed under the Creative Commons Attribution-NonCommercial.
![]()












Universidad de Oriente